Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metallic membranes membrane reactors dense

The first membrane reactor studies made use of dense metallic membranes, but due to certain limitations of these dense materials (sec below) and due to the rapid progress in the development of (micro)porous... [Pg.412]

Gas solubility (and thus permeation rate) in dense metal membranes typically decreases with increasing temperatures. Therefore, dense metal membrane reactors have the inherent advantage of avoiding runaway reactions. [Pg.303]

Palladium and selective alloys with other metals can be fabricated into dense membrane reactors in foil or tubular form, mostly in thin layers to reduce permeation resistance. In... [Pg.323]

Some dense inorganic membranes made of metals and metal oxides are oxygen specific. Notable ones include silver, zirconia stabilized by yttria or calcia, lead oxide, perovskite-type oxides and some mixed oxides such as yttria stabilized titania-zirconia. Their usage as a membrane reactor is profiled in Table 8.4 for a number of reactions decomposition of carbon dioxide to form carbon monoxide and oxygen, oxidation of ammonia to nitrogen and nitrous oxide, oxidation of methane to syngas and oxidative coupling of methane to form C2 hydrocarbons, and oxidation of other hydrocarbons such as ethylene, methanol, ethanol, propylene and butene. [Pg.328]

Enhancement in conversion by the usage of a membrane reactor has been demonstrated for many dehydrogenation reactions. Product selectivity of some hydrogenation and other reactions arc found to improve with a permselective membrane as part of the reactor. Several dense metal as well as solid elecu olyte membranes and porous metal as well as various oxide membranes have been discovered to be effective for the reaction performance. [Pg.360]

Membrane surface contamination. Although not as hydrogen selective as Pd and its alloys, other metals such as niobium and vanadium in dense form also have moderate to high hydrogen permselectivity and potentially can be considered as membrane materials. Inevitably the membrane surface is contaminated with non-metal impurities prior to or during separation or membrane reactor applications. [Pg.374]

Thermal shock resistance. Temperature swing as part of the normal cycles of operation or regeneration of the membranes or membrane reactors can lead to deleterious thermal shock. The materials for the various components in a membrane reactor should be carefully selected to impart good thermal sh k resistance. This is particularly important for high temperature reactions. Also listed in Table 9.5 is a summary of various membrane materials along with qualitative description of their resistance to thermal shock. Again, the available data apply to dense materials. While various metal oxides have been made into commercial inorganic membranes, they tend to be affected by thermal shock much more than other ceramic materials. [Pg.382]

Based on matenal considerations, membrane reactors can be classified into (1) organic-membrane reactors, and (2) inorgamc-membrane reactors, with the latter class subdivided into dense (metals) membrane reactors and porous-membrane reactors Based on membrane type and mode of operation, Tsotsis et al. [15] classified membrane reactors as shown in Table 3. A CMR is a reactor whose permselective membrane is the catalytic type or has a catalyst deposited in or on it. A CNMR contains a catalytic membrane that reactants penetrate from both sides. PBMR and FBMR contain a permselective membrane that is not catalytic the catalyst is present in the form of a packed or a fluidized bed PBCMR and FBCMR differ from the foregoing reactors in that membranes are catalytic. [Pg.10]

Silver membranes are permeable to oxygen. Metal membranes have been extensively studied in the countries of the former Soviet Union (Gryaznov and co-workers are world pioneers in the field of dense-membrane reactors), the United States, and Japan, but, except in the former Soviet countries, they have not been widely used in industry (although fine chemistry processes were reported). This is due to their low permeability, as compared to microporous metal or ceramic membranes, and their easy clogging. Bend Research, Inc. reported the use of Pd-composite membranes for the water-gas shift reaction. Those membranes are resistant to H2S poisoning. The properties and performance characteristics of metal membranes are presented in Chapter 16 of this book. [Pg.11]

Multi-phase catalytic reactions have attracted some attention but the area has not in our opinion been fully exploited. Previous studies have demonstrated that the yields obtained with the catalytic membrane reactors are often better than the yields obtained with more conventional reactors. Future research in this area must involve reactions with more immediate industrial applications. Examples of such reactions could be the hydrogenation reactions studied by Gryaznov and co-workers with dense metallic membranes which we discussed earlier. New materials like zeolite membrane could offer some advantages here with their enhanced regio- or chemioselectivity. [Pg.560]

The single cells consist of a dense solid electrolyte membrane and two porous electrodes. In most cases, at least one of the electrodes is exposed to an oxygen-containing gas (often, ambient air), while the other electrode is exposed to an inert gas, a liquid metal, a partial vacuum, or a reacting mixture (hydrogen, water vapor, hydrocarbons, CO, CO2, etc.). The single-chamber reactor (SCR) has been also proposed either as a membrane reactor or as a fuel cell. In this case, the solid-electrolyte disk, with two different electrodes that are coated either on opposite sides or on the same side of the pellet, is suspended in a flow of the reacting mixture (see Section 12.6.3). [Pg.398]

Membranes are classified by whether the thin permselective layer is porous or dense, and by the type of material (organic, polymeric, inorganic, metal, etc.) this membrane film is made from. The choice of a porous vs. a dense film, and of the type of material used for manufacturing depends on the desired separation process, operating temperature and driving force used for the separation the choice of material depends on the desired permeance and selectivity, and on thermal and mechanical stability requirements. For membrane reactor applications, where the reaction is coupled with the separation process, the thin film has also to be stable under the reaction conditions. [Pg.1]

Light alkane (C2-C4) dehydrogenation was the reaction studied by Gryaznov and coworkers in their pioneering studies [2.1, 2.2]. In their dehydrogenation reaction studies, they used Pd or Pd-alloy dense membranes, which were 100 % selective towards hydrogen permeation. The choice of these membranes in many of the early studies is because they were commercially available at that time in a variety of compositions, and their metallic nature allows the construction of multitubular and other complex-shaped membrane reactor systems. Comprehensive review papers on Pd membrane reactors have been published by the same group [2.1, 2.2], and also by Shu et al [2.3]. [Pg.14]

The effect of reactant loss on membrane reactor performance was explained nicely in a study by Harold et al [5.25], who compared conversion during the cyclohexane dehydrogenation reaction in a PBMR equipped with different types of membranes. The results are shown in Fig. 5.4, which shows the cyclohexane conversion in the reactor as a function of the ratio of permeation to reaction rates (proportional to the ratio of a characteristic time for reaction in the packed bed to a characteristic time for transport through the membrane). Curves 1 and 2 correspond to mesoporous membranes with a Knudsen (H2/cyclohexane) separation factor. Curves 3 and 4 are for microporous membranes with a separation factor of 100, and curves 5 and 6 correspond to dense metal membranes with an infinite separation factor. The odd numbered curves correspond to using an inert sweep gas flow rate equal to the cyclohexane flow, whereas for the even numbered curves the sweep to cyclohexane flow ratio is 10. [Pg.178]

Tosti S, Borelli R, Borgognoni F, Favuzza P, Rizzello C, Tarquini P (2008) Study of a dense metal membrane reactor for hydrogen separation from hydroiodic acid decomposition, hit J Hydrogen Energy 33 5106-5114... [Pg.51]


See other pages where Metallic membranes membrane reactors dense is mentioned: [Pg.306]    [Pg.315]    [Pg.324]    [Pg.375]    [Pg.454]    [Pg.73]    [Pg.172]    [Pg.173]    [Pg.296]    [Pg.34]    [Pg.1]    [Pg.9]    [Pg.532]    [Pg.534]    [Pg.535]    [Pg.546]    [Pg.555]    [Pg.67]    [Pg.1]    [Pg.7]    [Pg.43]    [Pg.62]    [Pg.69]    [Pg.172]    [Pg.172]    [Pg.9]    [Pg.173]    [Pg.176]    [Pg.107]    [Pg.248]    [Pg.150]    [Pg.250]    [Pg.320]   


SEARCH



Dense metal membranes

Dense metal membranes membrane reactors

Dense metallic membrane

Membrane metallic

Membranes dense

Membranes metallized

Metal membranes

Metallic membrane reactors

Reactor metal

© 2024 chempedia.info