Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject metal oxides

One of the most striking phenomena accompanying adsorption at solid—liquid and solid-gas interfaces is the evolution of heat. The existence of this thermal effect has been recognised at least from the early nineteenth century. Such effects were mostly confined to wetting or gas saturation processes of various finely divided solids, such as cements, active carbons, clays and metal oxides subjected to drying, evacuation, or heating [1],... [Pg.143]

Tetravalent lead is obtained when the metal is subjected to strong oxidizing action, such as in the electrolytic oxidation of lead anodes to lead dioxide, Pb02 when bivalent lead compounds are subjected to powerful oxidizing conditions, as in the calcination of lead monoxide to lead tetroxide, Pb O or by wet oxidation of bivalent lead ions to lead dioxide by chlorine water. The inorganic compounds of tetravalent lead are relatively unstable eg, in the presence of water they hydrolyze to give lead dioxide. [Pg.67]

The reaction of metals with gas mixtures such as CO/CO2 and SO2/O2 can lead to products in which the reaction of the oxygen potential in the gas mixture to form tire metal oxides is accompanied by the formation of carbon solutions or carbides in tire hrst case, and sulphide or sulphates in the second mixture. Since the most importairt aspects of this subject relate to tire performairce of materials in high temperature service, tire reactions are refeiTed to as hot corrosion reactions. These reactions frequendy result in the formation of a liquid as an intermediate phase, but are included here because dre solid products are usually rate-determining in dre coiTosion reactions. [Pg.283]

It is useful to treat the raffinate to recover the two acids it contains. The raffinate can first be subjected to a thermal treatment which decomposes it into insoluble metallic oxides, hydrofluoric acid and sulfuric acid. In a first scrubbing, sulfuric acid is recovered, whilst in a second stage, hydrofluoric acid is absorbed. When put into operation, this process not only causes a reduction in the amount of sludges but also leads to acid production for return to the process. [Pg.782]

It was concluded that the reaction mixture was thermally unstable if subjected to thermal initiation, and that temperatures of over 300°C were capable of attainment, when direct reaction between the metal oxides amd the chlorinated paraffins or their degradation products were possible. The origin of the heat energy necessary to increase the temperature of the milled batch from 55 to 91°C (the DSC-identified exotherm teperature) could not be identified [1],... [Pg.1859]

The title Spectroscopy in Catalysis is attractively compact but not quite precise. The book also introduces microscopy, diffraction and temperature programmed reaction methods, as these are important tools in the characterization of catalysts. As to applications, I have limited myself to supported metals, oxides, sulfides and metal single crystals. Zeolites, as well as techniques such as nuclear magnetic resonance and electron spin resonance have been left out, mainly because the author has little personal experience with these subjects. Catalysis in the year 2000 would not be what it is without surface science. Hence, techniques that are applicable to study the surfaces of single crystals or metal foils used to model catalytic surfaces, have been included. [Pg.10]

Huang and Freiser (132, 133) were able to prepare exohedral metal C60 ions [MC60]+ by direct reaction of the bare metal ions Fe+, Ni+, Co+, Cu+, Rh+, and La+ with Cgo vapor produced from a heated probe. The [MC60]+ ions when subjected to low-energy collision-induced dissociation with argon all produced the Cg0 ion. These results show that the metal ions attach to the outer surface of C60. The exohedral metallofullerene ions differ from the endohedral metallofullerenes produced by laser ablation of metal oxide-graphite mixtures and support the observations of Smalley and co-workers (148) who found that endohedral metallofullerene ions dissociate by loss of C2 units. [Pg.374]

Combustion of transition metal organometallic compounds produces a mixtures of simple compounds (metal oxides, carbon oxides, water, nitrogen) which is subject to exact analysis. Thermal decomposition or high temperature iodination of the same compounds cannot necessarily be expected to produce simple materials, with the result that identification is often a difficult problem. This is typified by diene derivatives of iron carbonyl10, where side reactions of the dienes (e.g. polymerization) follow disruption of the iron-diene bonds. The oligomeric mixture can be parti-... [Pg.77]

Chromylchloride, Cr02Cl2, the main subject of the publication which led to the original discussion about the mechanism [12], shows a very different reactivity compared to the other transition metal oxides discussed above. Even in the absence of peroxides, it yields epoxides rather than diols in a complex mixture of products, which also contains cis-chlorohydrine and vicinal dichlorides. Many different mechanisms have been proposed to explain the great variety of products observed, but none of the proposed intermediates could be identified. Stairs et al. have proposed a direct interaction of the alkene with one oxygen atom of chromylchloride [63-65], while Sharpless proposed a chromaoxetane [12] formed via a [2+2] pathway. [Pg.265]

Electrodes modified by underpotential deposition of metal were subjected as electrocatalysts to reduction of oxygen,oxidation of formic acid, and other processes in which polycrystalline metal substrates were used (see review in Ref. 151). Electrocatalysis of single-crystal electrodes modified by underpotential deposition was also investigated, as reviewed by Ad2iC. ... [Pg.240]

Decabromodiphenyl ether (BDE-209) is a major industrial product from the polybrominated diphenyl ethers used as flame retardants derivatives of this product have been detected in the environment. After exposure to the land surface, these contaminants adsorb on soil materials and may reach the atmosphere as particulate matter these particulates are subsequently subject to photolytic reactions. In this context, Ahn et al. (2006) studied photolysis of BDE-209 adsorbed on clay minerals, metal oxides, and sediments, under sunhght and UV dark irradiation. Dark and light control treatments during UV and sunlight irradiation showed no disappearance of BDE-209 during the experiments. Data on half-lives and rate constants of BDE-209 adsorbed on subsurface minerals and sediments, as determined by Ahn et al. (2006) and extracted from the literature, are shown in Table 16.6. [Pg.341]

Welders are typically exposed to a complex mixture of dust and fume of metallic oxides, as well as irritant gases, and are subject to mixed-dust pneumoconiosis with possible loss of pulmonary function this should not be confused with benign pneumoconiosis caused by iron oxide. Although an increased incidence of lung cancer has been observed among hematite miners exposed to iron oxide, presumably owing to concomitant radon gas exposure, there is no evidence that iron oxide alone is carcinogenic to man or animals. ... [Pg.404]

Soluble complexes are formed with metallic oxides, especially in the presence of alkali hydroxides. The strong tendency of hexitols to dissolve metallic oxides presents considerable technical difficulty in their manufacture and for this reason glass, rubber or stainless-steel equipment is used. In some instances well defined complexes can be isolated, particularly with alkaline earth oxides or mixtures with ferric oxide. These complexes absorb carbon dioxide and water and are unstable in dilute aqueous solution. Their structures are not established, but are inferred from analytical and physical measurements. Diehl has reviewed the subject. [Pg.224]

Strong concentrated bases slowly react with Pb giving H2 and HPb02. Upon heating in air, Pb yields PbO. The reactivity of Pb to certain reagents is enhanced by powdering it. The metal is subject to developing thin non-reactive layers of carbonate, basic carbonate, sulfide, and sulfate, as well as oxide, all of which increase its inertness. [Pg.197]


See other pages where Subject metal oxides is mentioned: [Pg.991]    [Pg.991]    [Pg.92]    [Pg.390]    [Pg.163]    [Pg.177]    [Pg.409]    [Pg.180]    [Pg.1065]    [Pg.14]    [Pg.179]    [Pg.52]    [Pg.247]    [Pg.80]    [Pg.430]    [Pg.205]    [Pg.389]    [Pg.63]    [Pg.19]    [Pg.241]    [Pg.781]    [Pg.1]    [Pg.42]    [Pg.357]    [Pg.399]    [Pg.39]    [Pg.426]    [Pg.171]    [Pg.3]    [Pg.460]    [Pg.696]    [Pg.396]    [Pg.290]    [Pg.133]    [Pg.73]    [Pg.133]   
See also in sourсe #XX -- [ Pg.1187 ]

See also in sourсe #XX -- [ Pg.155 ]




SEARCH



Subject Oxides

Subject metal

Subject metallated

Subject metallation

Subject oxidation

Subject transition metal oxides

© 2024 chempedia.info