Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal Oxides redox properties

Effect of Metal Oxide Surface Properties on Photoinduced Redox Reactions... [Pg.441]

Muller and co-workers have prepared the first reported tetrathiafulvalene (TTF) main chain polymer which they suggest may improve metallic and redox properties of the material due to improved through-bond and through-space interactions in the solid state <1999CC1407>. They also report a simple synthesis of the polymeric material via a novel oxidative polymerisation sequence as outlined in Scheme 18. [Pg.184]

Most zeolites have an intrinsic ability to exchange cations [1], This exchange ability is a result of isomorphous substitution of a cation of trivalent (mostly Al) or lower charges for Si as a tetravalent framework cation. As a consequence of this substitution, a net negative charge develops on the framework of the zeolite, which is to be neutralized by cations present within the channels or cages that constitute the microporous part of the crystalline zeolite. These cations may be any of the metals, metal complexes or alkylammonium cations. If these cations are transition metals with redox properties they can act as active sites for oxidation reactions. [Pg.125]

One-electron reduction or oxidation of organic compounds provides a useful method for the generation of anion radicals or cation radicals, respectively. These methods are used as key processes in radical reactions. Redox properties of transition metals can be utilized for the efficient one-electron reduction or oxidation (Scheme 1). In particular, the redox function of early transition metals including titanium, vanadium, and manganese has been of synthetic potential from this point of view [1-8]. The synthetic limitation exists in the use of a stoichiometric or excess amount of metallic reductants or oxidants to complete the reaction. Generally, the construction of a catalytic redox cycle for one-electron reduction is difficult to achieve. A catalytic system should be constructed to avoid the use of such amounts of expensive and/or toxic metallic reagents. [Pg.64]

To finish with another trend for NO removal consisting in NO direct decomposition, we would like to depict the infrared study of NO adsorption and decomposition over basic lanthanum oxide La203 [78], In this case, the basic oxygens are proposed to lead to N02 and N03 spectator species, whereas the active sites for effective NO decomposition are described as anion vacancies, which are often present in transition metal oxides. This last work makes the transition with the study of DeNO, catalysts from the point of view of their ability to transfer electrons, i.e. their redox properties. [Pg.112]

Transition metal oxides, rare earth oxides and various metal complexes deposited on their surface are typical phases of DeNO catalysts that lead to redox properties. For each of these phases, complementary tools exist for a proper characterization of the metal coordination number, oxidation state or nuclearity. Among all the techniques such as EPR [80], UV-vis [81] and IR, Raman, transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS) and NMR, recently reviewed [82] for their application in the study of supported molecular metal complexes, Raman and IR spectroscopies are the only ones we will focus on. The major advantages offered by these spectroscopic techniques are that (1) they can detect XRD inactive amorphous surface metal oxide phases as well as crystalline nanophases and (2) they are able to collect information under various environmental conditions [83], We will describe their contributions to the study of both the support (oxide) and the deposited phase (metal complex). [Pg.112]

We shall mainly consider, in the present chapter, non-precious transition metals, but the model can be extended to precious metals presenting an oxidation state higher than zero [10,11], such as Rhx+, Pdx+, Ptx+ and tix+. The model also applies to some oxides alone, such as ceria (Ce02) [19] or mixed oxides such as ceria-zirconia (CeZr02) able to present redox properties and oxygen vacancies during catalytic reactions. [Pg.148]

The reduction phase (phase 1) is slower than the re-oxidation one (phase 2). The C02 formation decreases regularly upon each CO pulse while the re-oxidation is achieved upon the first pulse of 02. This is a rather general phenomenon in catalysis. Oxides (like rare-earth oxides) reduced more slowly than their suboxides may be re-oxidized. It is interesting to note that the reverse phenomenon can be observed with the metals (Pt, Rh and Pd). Their oxides are reduced at a much lower temperature than the metal can be re-oxidized [19-21] even though the nature of support and the metal particle size may change the redox properties significantly [20,22,23],... [Pg.236]

The development of catalysts for the oxidation of organic compounds by air under ambient conditions is of both academic and practical importance (1). Formaldehyde is an important intermediate in synthetic chemistry as well as one of the major pollutants in the human environment (2). While high temperature (> 120 °C) catalytic oxidations are well known (3), low temperature aerobic oxidations under mild conditions have yet to be reported. Polyoxometalates (POMs) are attractive oxidation catalysts because these extensively modifiable metal oxide-like structures have high thermal and hydrolytic stability, tunable acid and redox properties, solubility in various media, etc. (4). Moreover, they can be deposited on fabrics and porous materials to render these materials catalytically decontaminating (5). Here we report the aerobic oxidation of formaldehyde in water under mild conditions (20-40 °C, 1 atm of air or 02) in the presence of Ce-substituted POMs (Ce-POMs). [Pg.429]

It was found that acidic or basic properties of metal oxides are not directly connected to their hydrogenolytic power, but redox properties seem to play a more important role.19... [Pg.124]

Metallothioneins (MT) are unique 7-kDa proteins containing 20 cysteine molecules bounded to seven zinc atoms, which form two clusters with bridging or terminal cysteine thiolates. A main function of MT is to serve as a source for the distribution of zinc in cells, and this function is connected with the MT redox activity, which is responsible for the regulation of binding and release of zinc. It has been shown that the release of zinc is stimulated by MT oxidation in the reaction with glutathione disulfide or other biological disulfides [334]. MT redox properties led to a suggestion that MT may possesses antioxidant activity. The mechanism of MT antioxidant activity is of a special interest in connection with the possible antioxidant effects of zinc. (Zinc can be substituted in MT by some other metals such as copper or cadmium, but Ca MT and Cu MT exhibit manly prooxidant activity.)... [Pg.891]

Reactions involving the creation, destruction, and elimination of defects can appear mysterious. In such cases it is useful to break the reaction down into hypothetical steps that can be represented by partial equations, rather akin to the half-reactions used to simplify redox reactions in chemistry. The complete defect formation equation is found by adding the partial equations together. The mles described above can be interpreted more flexibly in these partial equations but must be rigorously obeyed in the final equation. Finally, it is necessary to mention that a defect formation equation can often be written in terms of just structural (i.e., ionic) defects such as interstitials and vacancies or in terms of just electronic defects, electrons, and holes. Which of these alternatives is preferred will depend upon the physical properties of the solid. An insulator such as MgO is likely to utilize structural defects to compensate for the changes taking place, whereas a semiconducting transition-metal oxide with several easily accessible valence states is likely to prefer electronic compensation. [Pg.32]

The model shown in Scheme 2 indicates that a change in the formal oxidation state of the metal is not necessarily required during the catalytic reaction. This raises a fundamental question. Does the metal ion have to possess specific redox properties in order to be an efficient catalyst A definite answer to this question cannot be given. Nevertheless, catalytic autoxidation reactions have been reported almost exclusively with metal ions which are susceptible to redox reactions under ambient conditions. This is a strong indication that intramolecular electron transfer occurs within the MS"+ and/or MS-O2 precursor complexes. Partial oxidation or reduction of the metal center obviously alters the electronic structure of the substrate and/or dioxygen. In a few cases, direct spectroscopic or other evidence was reported to prove such an internal charge transfer process. This electronic distortion is most likely necessary to activate the substrate and/or dioxygen before the actual electron transfer takes place. For a few systems where deviations from this pattern were found, the presence of trace amounts of catalytically active impurities are suspected to be the cause. In other words, the catalytic effect is due to the impurity and not to the bulk metal ion in these cases. [Pg.400]

Based upon analogies between surface and molecular coordination chemistry outlined in Table 1, we have recently set forth to investigate the interaction of surface-active and reversibly electroactive moieties with the noble-metal electrocatalysts Ru, Rh, Pd, Ir, Pt and Au. Our interest in this class of compounds is based on the fact that chemisorption-induced changes in their redox properties yield important information concerning the coordination/organometallic chemistry of the electrode surface. For example, alteration of the reversible redox potential brought about by the chemisorption process is a measure of the surface-complex formation constant of the oxidized state relative to the reduced form such behavior is expected to be dependent upon the electrode material. In this paper, we describe results obtained when iodide, hydroquinone (HQ), 2,5-dihydroxythiophenol (DHT), and 3,6-dihydroxypyridazine (DHPz), all reversibly electroactive... [Pg.529]

Metal oxides possess multiple functional properties, such as acid-base, redox, electron transfer and transport, chemisorption by a and 71-bonding of hydrocarbons, O-insertion and H-abstract, etc. which make them very suitable in heterogeneous catalysis, particularly in allowing multistep transformations of hydrocarbons1-8 and other catalytic applications (NO, conversion, for example9,10). They are also widely used as supports for other active components (metal particles or other metal oxides), but it is known that they do not act often as a simple supports. Rather, they participate as co-catalysts in the reaction mechanism (in bifunctional catalysts, for example).11,12... [Pg.365]


See other pages where Metal Oxides redox properties is mentioned: [Pg.427]    [Pg.151]    [Pg.10]    [Pg.151]    [Pg.883]    [Pg.34]    [Pg.547]    [Pg.177]    [Pg.397]    [Pg.113]    [Pg.115]    [Pg.215]    [Pg.23]    [Pg.453]    [Pg.170]    [Pg.549]    [Pg.60]    [Pg.99]    [Pg.113]    [Pg.84]    [Pg.268]    [Pg.487]    [Pg.24]    [Pg.45]    [Pg.73]    [Pg.763]    [Pg.243]    [Pg.26]    [Pg.698]    [Pg.215]    [Pg.316]    [Pg.349]    [Pg.542]    [Pg.44]   


SEARCH



Oxidation properties

Oxidative redox

Redox metal

Redox oxidations

Redox properties

Redox properties, of metal oxides

© 2024 chempedia.info