Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal compound interface

Thus in Figure 19 lattice vacancy with a trapped hole is injected at the compound electrolyte interface, the imperfection at the metal-compound interface reacts to release a vacancy into the metal. Alternatively, in Figure 20 the exchange process injects a lattice vacancy on the cation lattice which appears at the metal compound interphase to release an electron and transfer a metal ion into the surface region. [Pg.24]

If the major constituents of a solid alloy in contact with a liquid alloy are highly soluble in the latter without formation of compounds, progressive attack by solution is to be expected. If, on the other hand, a stable inter-metallic compound is formed, having a melting point above the temperature of reaction, a layer of this compound will form at the interface and reduce the rate of attack to a level controlled by diffusion processes in the solid state. By far the most serious attack, however, occurs in the presence of stresses, since in this case the liquid alloy, or a product of its reaction with the solid alloy, may penetrate along the grain boundaries, with resultant embrittlement and serious loss of strength. [Pg.960]

The deposition temperature is above 1200°C and the deposit usually consists of an outer layer of MoSi2 and an intermediate layer of MoSi.PlP l Such reactions are difficult to control and often result in mechanical stresses and voids at the interface, which may cause adhesion failure. The direct deposition of the silicide is often preferred. This is accomplished by reacting a gaseous silicon compound with a gaseous metal compound, as shown in the following sections. [Pg.329]

Gaussian-type orbitals, the computational requirements grow, in the limit, with the fourth power in the number of basis functions on the SCF level and with even a higher power for methods including correlation. Both the conceptual and the computational aspects prevent the computational study of important problems such as the chemistry of transition metal surfaces, interfaces, bulk compounds, and large molecular systems. [Pg.50]

Similar results have recently been reported by Aspnes and Heller. They proposed an autocatalytic model for photoactive systems involving metal/compound semiconductor interfaces. To explain induction times in CdS systems (.9), they suggest that hydrogen incorporated in the solid lowers the barrier to charge transfer across the interface and thereby accelerates H2 production rates. [Pg.570]

A number of solid compounds have been examined with this time-domain method since the first report of coherent phonons in GaAs [10]. Coherent phonons were created at the metal/semiconductor interface of a GaP photodiode [29] and stacked GaInP/GaAs/GalnP layers [30]. Cesium-deposited [31-33] and potassium-deposited [34] Pt surfaces were extensively studied. Manipulation of vibrational coherence was further demonstrated on Cs/Pt using pump pulse trains [35-37]. Magnetic properties were studied on Gd films [38, 39]. [Pg.109]

An inductively coupled plasma formed by passing argon through a quartz torch is widely used for the mass spectroscopic analysis of metal compounds separated by online HPLC.6 Samples are nebulized on introduction into the interface. Plasma impact evaporates solvent, and atomizes and ionizes the analyte. Applications include separation of organoarsenic compounds on ion-pairing F4PLC and vanadium species on cation exchange. [Pg.59]

All Fe oxide films on Pt have strongly relaxed, unreconstructed bulk-terminated surfaces, but while the Fe304 and Fe203 oxide layers are similar to their respective bulk compounds, the ultrathin FeO layers are true 2D oxide phases that are different from the FeO bulk and stabilized by the metal-oxide interface. [Pg.169]

The argument of each sine contribution in (6-8) depends on k, which is known, r, which is to be determined, and the phase shift (f(k). The latter needs to be known before r can be determined. The phase shift is a characteristic property of the scattering atom in a certain environment, and is best derived from the EXAFS spectrum of a reference compound, for which all distances are known. For example, the phase shift for zero-valent rhodium atoms in the EXAFS spectrum of a supported rhodium catalyst is best determined from a spectrum of pure rhodium metal as in Fig. 6.13, while RI12O3 may provide a reference for the scattering contribution from oxygen neighbors in the metal support interface. [Pg.168]

Other than in polymer matrix composites, the chemical reaction between elements of constituents takes place in different ways. Reaction occurs to form a new compound(s) at the interface region in MMCs, particularly those manufactured by a molten metal infiltration process. Reaction involves transfer of atoms from one or both of the constituents to the reaction site near the interface and these transfer processes are diffusion controlled. Depending on the composite constituents, the atoms of the fiber surface diffuse through the reaction site, (for example, in the boron fiber-titanium matrix system, this causes a significant volume contraction due to void formation in the center of the fiber or at the fiber-compound interface (Blackburn et al., 1966)), or the matrix atoms diffuse through the reaction product. Continued reaction to form a new compound at the interface region is generally harmful to the mechanical properties of composites. [Pg.14]

By definition, brazes have a different composition from the components they are used to join and hence interdiffusion will occur during and after interface creation. Reference has been made already to the detrimental effects of the growth of thick reaction products at metal-ceramic interfaces and similar effects can occur with metal-metal systems. Thus it is not good practice to use A1 brazes for the joining of steel or Cu components or to use Ni brazes containing Si for the joining of refractory metal components because of the rapid formation of fragile layers of intermetallic compounds. [Pg.377]

Figure 1.27. -curve for (a) Nj isotherms on 22 different solid chlorides and (b) N2 isotherms on eight different organo-metallic compounds. The BET constant C is between 40 and 70 for cases (a) and between 20 and 30 for cases (b). (Redrawn from A. Lecloux. J.P. Pirard, J. Colloid Interface Sci.. 70 (1979) 265.)... [Pg.110]


See other pages where Metal compound interface is mentioned: [Pg.41]    [Pg.157]    [Pg.367]    [Pg.18]    [Pg.1251]    [Pg.1132]    [Pg.538]    [Pg.17]    [Pg.122]    [Pg.346]    [Pg.246]    [Pg.186]    [Pg.218]    [Pg.223]    [Pg.26]    [Pg.41]    [Pg.50]    [Pg.408]    [Pg.232]    [Pg.347]    [Pg.135]    [Pg.274]    [Pg.15]    [Pg.23]    [Pg.90]    [Pg.242]    [Pg.255]    [Pg.300]    [Pg.220]    [Pg.560]    [Pg.440]    [Pg.408]    [Pg.297]    [Pg.53]   
See also in sourсe #XX -- [ Pg.24 ]




SEARCH



Interface compounds

© 2024 chempedia.info