Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal complex/surface reactivity

General Trends in Metal Complex/Surface Reactivity, and Further Requirements for Metal-Supported Catalyst Preparation... [Pg.359]

Catalysis by Metals. Metals are among the most important and widely used industrial catalysts (69,70). They offer activities for a wide variety of reactions (Table 1). Atoms at the surfaces of bulk metals have reactivities and catalytic properties different from those of metals in metal complexes because they have different ligand surroundings. The surrounding bulk stabilizes surface metal atoms in a coordinatively unsaturated state that allows bonding of reactants. Thus metal surfaces offer an advantage over metal complexes, in which there is only restricted stabilization of coordinative... [Pg.175]

A great variety of suitable polymers is accessible by polymerization of vinylic monomers, or by reaction of alcohols or amines with functionalized polymers such as chloromethylat polystyrene or methacryloylchloride. The functionality in the polymer may also a ligand which can bind transition metal complexes. Examples are poly-4-vinylpyridine and triphenylphosphine modified polymers. In all cases of reactively functionalized polymers, the loading with redox active species may also occur after film formation on the electrode surface but it was recognized that such a procedure may lead to inhomogeneous distribution of redox centers in the film... [Pg.53]

A highly detailed picture of a reaction mechanism evolves in-situ studies. It is now known that the adsorption of molecules from the gas phase can seriously influence the reactivity of adsorbed species at oxide surfaces[24]. In-situ observation of adsorbed molecules on metal-oxide surfaces is a crucial issue in molecular-scale understanding of catalysis. The transport of adsorbed species often controls the rate of surface reactions. In practice the inherent compositional and structural inhomogeneity of oxide surfaces makes the problem of identifying the essential issues for their catalytic performance extremely difficult. In order to reduce the level of complexity, a common approach is to study model catalysts such as single crystal oxide surfaces and epitaxial oxide flat surfaces. [Pg.26]

Among the main goals of electrochemical research are the design, characterization and understanding of electrocatalytic systems, (1-2) both in solution and on electrode surfaces. (3.) Of particular importance are the nature and structure of reactive intermediates involved in the electrocatalytic reactions.(A) The nature of an electrocatalytic system can be quite varied and can include activation of the electrode surface by specific pretreatments (5-9) to generate active sites, deposition or adsorption of metallic adlayers (10-111 or transition metal complexes. (12-161 In addition the electrode can act as a simple electron shuttle to an active species in solution such as a metallo-porphyrin or phthalocyanine. [Pg.217]

These results suggest that the critical factor in the substrate-mediated intermolecular interactions which occur within the close-packed DHT layer is the inherent strong reactivity of the diphenolic moiety with the Pt surface. The interaction of adsorbates with each other through the mediation of the substrate is of fundamental importance in surface science. The theoretical treatment, however, involves complicated many-body potentials which are presently not well-understood (2.). It is instructive to view the present case of Pt-substrate-mediated DHT-DHT interactions in terms of mixed-valence metal complexes (2A) For example, in the binuclear mixed-valence complex, (NH3)5RU(11)-bpy-Ru(111) (NH 3)5 (where bpy is 4,4 -bipyridine), the two metal centers are still able to interact with each other via the delocalized electrons within the bpy ligand. The interaction between the Ru(II) and Ru(III) ions in this mixed-valence complex is therefore ligand-mediated. The Ru(II)-Ru(III) coupling can be written schematically as ... [Pg.539]

A theoretical model for the adsorption of metals on to clay particles (<0.5 pm) of sodium montmorillonite, has been proposed, and experimental data on the adsorption of nickel and zinc have been discussed in terms of fitting the model and comparison with the Gouy-Chapman theory [10]. In clays, two processes occur. The first is a pH-independent process involving cation exchange in the interlayers and electrostatic interactions. The second is a pH-dependent process involving the formation of surface complexes. The data generally fitted the clay model and were seen as an extension to the Gouy-Chapman model from the surface reactivity to the interior of the hydrated clay particle. [Pg.362]

It is perhaps wise to begin by questioning the conceptual simplicity of the uptake process as described by equation (35) and the assumptions given in Section 6.1.2. As discussed above, the Michaelis constant, Km, is determined by steady-state methods and represents a complex function of many rate constants [114,186,281]. For example, in the presence of a diffusion boundary layer, the apparent Michaelis-Menten constant will be too large, due to the depletion of metal near the reactive surface [9,282,283], In this case, a modified flux equation, taking into account a diffusion boundary layer and a first-order carrier-mediated uptake can be taken into account by the Best equation [9] (see Chapter 4 for a discussion of the limitations) or by other similar derivations [282] ... [Pg.491]

Since grafting stabilizes species that would be too reactive in solution (in general, by allowing for isolated sites), and supported species may present catalytic properties unknown to the molecular chemistry, a lack of data concerning d(0) metal complexes derived from Nb and Cr is astonishing. Hopefully, the knowledge accumulated so far will be an incentive to develop the surface organo-metallic chemistry of these elements as well as the surface chemistry of the rare earths. [Pg.449]

A key aspect of metal oxides is that they possess multiple functional properties acid-base, electron transfer and transport, chemisorption by a and 7i-bonding of hydrocarbons, O-insertion and H-abstraction, etc. This multi-functionality allows them to catalyze complex selective multistep transformations of hydrocarbons, as well as other catalytic reactions (NO,c conversion, for example). The control of the catalyst multi-functionality requires the ability to control not only the nanostructure, e.g. the nano-scale environment around the active site, " but also the nano-architecture, e.g. the 3D spatial organization of nano-entities. The active site is not the only relevant aspect for catalysis. The local area around the active site orients or assists the coordination of the reactants, and may induce sterical constrains on the transition state, and influences short-range transport (nano-scale level). Therefore, it plays a critical role in determining the reactivity and selectivity in multiple pathways of transformation. In addition, there are indications pointing out that the dynamics of adsorbed species, e.g. their mobility during the catalytic processes which is also an important factor determining the catalytic performances in complex surface reaction, " is influenced by the nanoarchitecture. [Pg.81]

A definite theoretical explanation of this behavior is not available. It is important to realize that the preference of a metal for 3C as opposed to 2C complexes or for 5C as opposed to 3C complexes may be either intrinsic or induced by adsorption of less reactive carbonaceous fragments and carbon (for simplicity, we shall refer to both of these as carbon ) on the metal (alloy) surface. Also, the choice of the reaction conditions (apparent contact time, poisoning or self-poisoning of the catalyst, etc.) influences the temperature range in which the catalysts can be tested, and since the selectivity in various complex formations is also temperature dependent, one must always analyze which aspects of the product distributions are intrinsic properties of a metal and which are induced by often unavoidable side reactions. [Pg.172]


See other pages where Metal complex/surface reactivity is mentioned: [Pg.417]    [Pg.520]    [Pg.10]    [Pg.360]    [Pg.285]    [Pg.341]    [Pg.235]    [Pg.136]    [Pg.305]    [Pg.266]    [Pg.52]    [Pg.106]    [Pg.449]    [Pg.453]    [Pg.362]    [Pg.7]    [Pg.366]    [Pg.375]    [Pg.248]    [Pg.249]    [Pg.184]    [Pg.247]    [Pg.155]    [Pg.492]    [Pg.5]    [Pg.168]    [Pg.297]    [Pg.392]    [Pg.417]    [Pg.448]    [Pg.462]    [Pg.470]    [Pg.498]    [Pg.3]    [Pg.687]    [Pg.313]    [Pg.160]   
See also in sourсe #XX -- [ Pg.359 ]




SEARCH



Complex Reactive

Metal complexes reactivity

Metal reactivity surfaces

Metal surfaces, reactive

Metals reactivity

Reactive surface

Reactivity metallic complexes

Surface complex

Surface complexation

Surface reactivity

© 2024 chempedia.info