Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal clusters, oxide surface

In ecent years the utility of extended X-ray absorption fine structure UXAFS) as a probe for the study of catalysts has been clearly demonstrated (1-17). Measurements of EXAFS are particularly valuable for very highly dispersed catalysts. Supported metal systems, in which small metal clusters or crystallites are commonly dispersed on a refractory oxide such as alumina or silica, are good examples of such catalysts. The ratio of surface atoms to total atoms in the metal clusters is generally high and may even approach unity in some cases. [Pg.253]

Abstract This review is a summary of supported metal clusters with nearly molecular properties. These clusters are formed hy adsorption or sirnface-mediated synthesis of metal carbonyl clusters, some of which may he decarhonylated with the metal frame essentially intact. The decarhonylated clusters are bonded to oxide or zeolite supports by metal-oxygen bonds, typically with distances of 2.1-2.2 A they are typically not free of ligands other than the support, and on oxide surfaces they are preferentially bonded at defect sites. The catalytic activities of supported metal clusters incorporating only a few atoms are distinct from those of larger particles that may approximate bulk metals. [Pg.211]

Supported metal carbonyl clusters are alternatively formed from mononuclear metal complexes by surface-mediated synthesis [5,13] examples are [HIr4(CO)ii] formed from Ir(CO)2(acac) on MgO and Rh CCOlie formed from Rh(CO)2(acac) on y-Al203 [5,12,13]. These syntheses are carried out in the presence of gas-phase CO and in the absence of solvents. Synthesis of metal carbonyl clusters on oxide supports apparently often involves hydroxyl groups or water on the support surface analogous chemistry occurs in solution [ 14]. A synthesis from a mononuclear metal complex precursor is usually characterized by a yield less than that attained as a result of simple adsorption of a preformed metal cluster, and consequently the latter precursors are preferred when the goal is a high yield of the cluster on the support an exception is made when the clusters do not fit into the pores of the support (e.g., a zeolite), and a smaller precursor is needed. [Pg.214]

Synthesis of metal carbonyl clusters on oxide surfaces (followed by extraction into a solvent and workup) is occasionally a more convenient and efficient method for preparation of a metal carbonyl cluster than conventional solution chemistry. This synthetic strategy offers the green chemistry advantage of minimizing solvent use, as the reaction often occurs in the absence of solvent. [Pg.214]

A wide variety of solid materials are used in catalytic processes. Generally, the (surface) structure of metal and supported metal catalysts is relatively simple. For that reason, we will first focus on metal catalysts. Supported metal catalysts are produced in many forms. Often, their preparation involves impregnation or ion exchange, followed by calcination and reduction. Depending on the conditions quite different catalyst systems are produced. When crystalline sizes are not very small, typically > 5 nm, the metal crystals behave like bulk crystals with similar crystal faces. However, in catalysis smaller particles are often used. They are referred to as crystallites , aggregates , or clusters . When the dimensions are not known we will refer to them as particles . In principle, the structure of oxidic catalysts is more complex than that of metal catalysts. The surface often contains different types of active sites a combination of acid and basic sites on one catalyst is quite common. [Pg.94]

Supported model catalysts are frequently prepared by thermally evaporating metal atoms onto a planar oxide surface in UHV. The morphology and growth of supported metal clusters depend on a number of factors such as substrate morphology, the deposition rate, and the surface temperature. For a controlled synthesis of supported model catalysts, it is necessary to monitor the growth kinetics of supported metal... [Pg.85]

TOF-SIMS images (Figs. 13.5 and 13.6) illustrate the ability to detect changes in the dispersion (uniform or presence of metal clusters) of the active phase in supported-oxide catalysts. Figure 13.5 shows nearly uniform distribution of molybdenum. The surface contamination with NH4+ ions coming from a precursor, which were not removed during the catalyst preparation process, is also observed. Cobalt clusters in the range of several micrometers are clearly visible in Fig. 13.6. [Pg.281]

Prediction of interaction between metal clusters with oxide surface The HSAB principle classifies the interaction between acids and bases in terms of global softness. In the last few years, the reactivity index methodology was well established and had found its application in a wide variety of systems. This study deals with the viability of the reactivity index to monitor metal cluster interaction with oxide. Pure gold cluster of a size between 2 and 12 was chosen to interact with clean alumina (100) surface. A scale was derived in terms of intra- and intermolecular interactions of gold cluster with alumina surface to rationalize the role of reactivity index in material designing [43]. [Pg.510]

Chatterjee, A. and Kawazoe, A. 2007. Application of the reactivity index to propose intra and intermolecular reactivity in metal cluster interaction over oxide surface. Mater. Trans. 48 2152-2158. [Pg.519]

A.K. Santra and D.W. Goodman, Size-dependent electronic, structural, and catalytic properties of metal clusters supported on ultrathin oxide films, in Catalysis and Electrocatalysis at Nanoparticle Surfaces, eds. A. Wieckowski, E.R. Savinova, and C.G. Vayenas. Marcel Dekker, New York, 2003, pp. 281-309. [Pg.369]

In addition, the rate of Oz reduction, forming 02 by electron, is of importance in preventing carrier recombination during photocatalytic processes utilizing semiconductor particles. 02 formation may be the slowest step in the reaction sequence for the oxidation of organic molecules by OH radicals or directly by positive holes. Cluster deposition of noble metals such as Pt, Pd, and Ag on semiconductor surfaces has been demonstrated to accelerate their formation because the noble metal clusters of appropriate loading or size can effectively trap the photoinduced electrons [200]. Therefore, the addition of a noble metal to a semiconductor is considered as an effective method of semiconductor surface modification to improve the separation efficiency of photoinduced electron and hole pairs. [Pg.443]


See other pages where Metal clusters, oxide surface is mentioned: [Pg.118]    [Pg.565]    [Pg.110]    [Pg.411]    [Pg.138]    [Pg.990]    [Pg.17]    [Pg.184]    [Pg.195]    [Pg.942]    [Pg.299]    [Pg.47]    [Pg.360]    [Pg.299]    [Pg.72]    [Pg.218]    [Pg.84]    [Pg.90]    [Pg.197]    [Pg.301]    [Pg.60]    [Pg.56]    [Pg.57]    [Pg.152]    [Pg.155]    [Pg.207]    [Pg.238]    [Pg.19]    [Pg.389]    [Pg.199]    [Pg.359]    [Pg.418]    [Pg.163]    [Pg.344]    [Pg.363]    [Pg.368]    [Pg.224]    [Pg.344]   
See also in sourсe #XX -- [ Pg.172 ]




SEARCH



Chemical reactivity metal clusters, oxide surface

Cluster surface

Clusters oxidation

Metal oxide surfaces

Metal oxide surfaces, oxidation

Metal-oxide clusters

Surface metallic oxide

© 2024 chempedia.info