Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal chemical stability

In tenns of an electrochemical treatment, passivation of a surface represents a significant deviation from ideal electrode behaviour. As mentioned above, for a metal immersed in an electrolyte, the conditions can be such as predicted by the Pourbaix diagram that fonnation of a second-phase film—usually an insoluble surface oxide film—is favoured compared with dissolution (solvation) of the oxidized anion. Depending on the quality of the oxide film, the fonnation of a surface layer can retard further dissolution and virtually stop it after some time. Such surface layers are called passive films. This type of film provides the comparably high chemical stability of many important constmction materials such as aluminium or stainless steels. [Pg.2722]

The materials problems in the construction of microchips are related to both diffusion and chemical interactions between the component layers, as shown above. There is probably a link between drese two properties, since the formation of inter-metallic compounds of medium or high chemical stability frequently leads to tire formation of a compound ban ier in which tire diffusion coefficients of both components are lower than in the pure metals. [Pg.220]

The tips used for STM experiments should be sharp and stable. Chemical stability can be achieved by using a noble metal. Mechanical rigidity can be reached by short wires. Alloys of Pt and Ir are frequently used for fabrication of STM tips. They can be produced in a surprisingly simple way just by cutting a metal wire with conventional cutting tools. Because of their high chemical stability, such Pt/Ir tips are well... [Pg.286]

Chemical Reactivity - Reactivity with Water Reacts slowly to generate hydrogen chloride (hydrochloric acid). The reaction is not hazardous Reactivity with Common Materials Corrodes metal slowly Stability During Transport Stable Neutralizing Agents for Acids and Caustics Flush with water, rinse with sodium bicarbonate or lime solution Polymerization Not pertinent Inhibitor of Polymerization Not pertinent. [Pg.24]

Organic metal salts have frequently failed to produce an appreciable chemical stabilization effect, either during dehydrochlorination induction periods or in later decomposition stages. While this does not rule out the occurrence of Frye and Horst substitution reactions, it does suggest that these reactions may not be responsible for the observed retardation of color developments [126-128]. [Pg.327]

The hydraulic oil must provide adequate lubrication in the diverse operating conditions associated with the components of the various systems. It must function over an extended temperature range and sometimes under boundary conditions. It will be expected to provide a long, trouble-free service life its chemical stability must therefore be high. Its wear-resisting properties must be capable of handling the high loads in hydraulic pumps. Additionally, the oil must protect metal surfaces from corrosion and it must both resist emulsification and rapidly release entrained air that, on circulation, would produce foam. [Pg.862]

Charles, Jacques, 57 Charles law, 58 Chemical bonding, see Bonding Chemical bonds, see Bond Chemical change, 38 Chemical energy, 119 Chemical equations, see Equations Chemical equilibrium, law of, 152 Chemical formulas, see Formula Chemical kinetics, 124 Chemical reactions, see Reactions Chemical stability, 30 Chemical symbols, 30 not from common names, 31 see inside back cover Chemotherapy, 434 Chlorate ion, 360 Chloric acid, 359 Chlorides chemistry of, 99 of alkali metals, 93,103 of third-row elements, 103 Chlorine... [Pg.457]

Later, Farnham and Johnson reported the synthesis of higher molecular weight, tiiermoplastic polyfarylcnc etiier)s with good thermal, oxidative, chemical stability, and physical properties by reacting (at 120-260°C) a phenolate metal salt... [Pg.361]

The refractory-metal borides have a structure which is dominated by the boron configuration. This clearly favors the metallic properties, such as high electrical and thermal conductivities and high hardness. Chemical stability, which is related to the electronic... [Pg.323]

A central theme in our approach, which we believe to be different from those of others, is to focus on the changing chemistry associated with higher, middle and lower oxidation state compounds. The chemical stability of radical species and open-shell Werner-type complexes, on the one hand, and the governance of the 18-electron rule, on the other, are presented as consequences of the changing nature of the valence shell in transition-metal species of different oxidation state. [Pg.218]

The immobilization of metal catalysts onto sohd supports has become an important research area, as catalyst recovery, recycling as well as product separation is easier under heterogeneous conditions. In this respect, the iron complex of the Schiff base HPPn 15 (HPPn = iVA -bis(o-hydroxyacetophenone) propylene diamine) was supported onto cross-linked chloromethylated polystyrene beads. Interestingly, the supported catalyst showed higher catalytic activity than the free metal complex (Scheme 8) [50, 51]. In terms of chemical stability, particularly with... [Pg.89]

To select the metal to be incorporated into the substrate porphyrin unit, the following basic properties of metalloporphyrins should be considered. The stability constant of MgPor is too small to achieve the usual oligomeric reactions and purification by silica gel chromatography. The starting material (Ru3(CO)i2) for Ru (CO)Por is expensive and the yield of the corresponding metalation reaction is low. Furthermore, the removal of rutheniirm is difficult, and it is likewise difficult to remove the template from the obtained ruthenium CPOs. Therefore, ZnPor is frequently used as a substrate in this template reaction, because of the low prices of zinc sources (zinc acetate and/or zinc chloride), the high yield in the metalation reaction, the sufficient chemical stability of the ZnPor under con-... [Pg.72]

Chemical and electrochemical techniques have been applied for the dimensionally controlled fabrication of a wide variety of materials, such as metals, semiconductors, and conductive polymers, within glass, oxide, and polymer matrices (e.g., [135-137]). Topologically complex structures like zeolites have been used also as 3D matrices [138, 139]. Quantum dots/wires of metals and semiconductors can be grown electrochemically in matrices bound on an electrode surface or being modified electrodes themselves. In these processes, the chemical stability of the template in the working environment, its electronic properties, the uniformity and minimal diameter of the pores, and the pore density are critical factors. Typical templates used in electrochemical synthesis are as follows ... [Pg.189]

Compared to the corresponding polycrystalline metal chalcogenides, chalcogenide glasses exhibit better chemical stability in acidic and redox media and often... [Pg.337]

Titanium dioxide is a catalytically inactive but rather corrosion-resistant material. Ruthenium dioxide is one of the few oxides having metal-like conductivity. It is catalytically quite active toward oygen and chlorine evolution. However, its chemical stability is limited, and it dissolves anodically at potentials of 1.50 to 1.55 V (RHE) with appreciable rates. A layer of mixed titanium and ruthenium dioxides containing 1-2 mg/cm of the precious metal has entirely unique properties in terms of its activity and selectivity toward chlorine evolution and in terms of its stability. With a working current density in chlorine evolution of 20 to 50mA/cm, the service life of such anodes is several years (up to eight years). [Pg.547]

This chapter will mainly deal with the advantages of the alkaline EG synthesis method for the chemical preparation of noble metal nanoclusters stabilized by EG and simple ions, as well as the excellent performances of the functional materials assembled using these unprotected metal nanoclusters as building blocks. [Pg.328]

Scheme 1. Procedure of alkaline EG method for the chemical preparation of metal nanoclusters stabilized by EG and sample ions. Scheme 1. Procedure of alkaline EG method for the chemical preparation of metal nanoclusters stabilized by EG and sample ions.

See other pages where Metal chemical stability is mentioned: [Pg.306]    [Pg.46]    [Pg.129]    [Pg.280]    [Pg.3]    [Pg.119]    [Pg.334]    [Pg.772]    [Pg.1324]    [Pg.909]    [Pg.266]    [Pg.441]    [Pg.181]    [Pg.382]    [Pg.123]    [Pg.85]    [Pg.292]    [Pg.194]    [Pg.208]    [Pg.314]    [Pg.315]    [Pg.337]    [Pg.321]    [Pg.27]    [Pg.402]    [Pg.307]    [Pg.337]    [Pg.223]    [Pg.259]    [Pg.197]    [Pg.373]    [Pg.349]    [Pg.40]   
See also in sourсe #XX -- [ Pg.303 ]




SEARCH



Chemical stability

Chemical stabilization

Metallic stabilizers

Metals stabilization

© 2024 chempedia.info