Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal-activated addition reactions

Besides stereoselectivity requirements, transition metal catalyzed addition reactions pose several other selectivity problems. Thus, regioselectivity must be achieved with unsymmetrical addends and isomerization of substrates and products, such as double-bond isomerization or epimerization of stereogenic centers, must be suppressed. Manipulation of catalytic systems might not only influence catalytic activities but also disturb a rather delicate reaction control and thus lead to different product selectivities. [Pg.289]

In 1952, Pfeil and Schroth reported that, in formose formation, the Cannizzaro reaction takes part, simultaneously and competitively, with the addition reaction. Whereas alcohols of low molecular weight, 1,4-dioxane, tetrahydrofuran, and other compounds repress the Cannizzaro reaction, the hydroxides of alkaline-earth and alkali metals activate the reaction, with only one exception, namely, thallium hydroxide, which catalyzes the addition reaction specifically. In 1971, the two reactions, namely, the addition reaction and the Cannizzaro reaction, were quantitatively and differentially measured by Fujino. When measured for the... [Pg.176]

The recent developments on the metallation chemistry of oxazoles and benzoxazoles, isoxazoles and benzisoxazoles, pyrazoles and indazoles, thiazoles and benzo-thiazoles, and isothiazoles, benzo[c]isothiazoles, and benzoMisothiazoles have been reviewed. The two-decade history of catalytic carbon-carbon bond formation via direct borylation of alkane C-H bonds catalysed by transition metal complexes has been reported. The alkane functionalization via electrophilic activation has been underlined. " Recent advances of transition-metal-catalysed addition reactions of C-H bonds to polar C-X (X=N, O) multiple bonds have been highlighted and their mechanisms have been discussed. The development and applications of the transition metal-catalysed coupling reactions have been also reviewed. - ... [Pg.375]

Catalytic Properties. In zeoHtes, catalysis takes place preferentially within the intracrystaUine voids. Catalytic reactions are affected by aperture size and type of channel system, through which reactants and products must diffuse. Modification techniques include ion exchange, variation of Si/A1 ratio, hydrothermal dealumination or stabilization, which produces Lewis acidity, introduction of acidic groups such as bridging Si(OH)Al, which impart Briimsted acidity, and introducing dispersed metal phases such as noble metals. In addition, the zeoHte framework stmcture determines shape-selective effects. Several types have been demonstrated including reactant selectivity, product selectivity, and restricted transition-state selectivity (28). Nonshape-selective surface activity is observed on very small crystals, and it may be desirable to poison these sites selectively, eg, with bulky heterocycHc compounds unable to penetrate the channel apertures, or by surface sdation. [Pg.449]

Chemical Properties. Higher a-olefins are exceedingly reactive because their double bond provides the reactive site for catalytic activation as well as numerous radical and ionic reactions. These olefins also participate in additional reactions, such as oxidations, hydrogenation, double-bond isomerization, complex formation with transition-metal derivatives, polymerization, and copolymerization with other olefins in the presence of Ziegler-Natta, metallocene, and cationic catalysts. All olefins readily form peroxides by exposure to air. [Pg.426]

The reaction rate of fumarate polyester polymers with styrene is 20 times that of similar maleate polymers. Commercial phthaHc and isophthaHc resins usually have fumarate levels in excess of 95% and demonstrate full hardness and property development when catalyzed and cured. The addition polymerization reaction between the fumarate polyester polymer and styrene monomer is initiated by free-radical catalysts, commercially usually benzoyl peroxide (BPO) and methyl ethyl ketone peroxide (MEKP), which can be dissociated by heat or redox metal activators into peroxy and hydroperoxy free radicals. [Pg.317]

Etherification. Ethers of amyl alcohols have been prepared by reaction with ben2hydrol (63), activated aromatic haUdes (64), dehydration-addition reactions (65), addition to olefins (66—71), alkoxylation with olefin oxides (72,73) and displacement reactions involving thek alkah metal salts (74—76). [Pg.373]

Wilkinson Hyd.rogena.tion, One of the best understood catalytic cycles is that for olefin hydrogenation in the presence of phosphine complexes of rhodium, the Wilkinson hydrogenation (14,15). The reactions of a number of olefins, eg, cyclohexene and styrene, are rapid, taking place even at room temperature and atmospheric pressure but the reaction of ethylene is extremely slow. Complexes of a number of transition metals in addition to rhodium are active for the reaction. [Pg.164]

The precious metals possess much higher specific catalytic activity than do the base metals. In addition, base metal catalysts sinter upon exposure to the exhaust gas temperatures found in engine exhaust, thereby losing the catalytic performance needed for low temperature operation. Also, the base metals deactivate because of reactions with sulfur compounds at the low temperature end of auto exhaust. As a result, a base metal automobile exhaust... [Pg.487]

The l ,J -DBFOX/Ph-transition metal aqua complex catalysts should be suitable for the further applications to conjugate addition reactions of carbon nucleophiles [90-92]. What we challenged is the double activation method as a new methodology of catalyzed asymmetric reactions. Therein donor and acceptor molecules are both activated by achiral Lewis amines and chiral Lewis acids, respectively the chiral Lewis acid catalysts used in this reaction are J ,J -DBFOX/Ph-transition metal aqua complexes. [Pg.291]

The subjects of structure and bonding in metal isocyanide complexes have been discussed before 90, 156) and will not be treated extensively here. A brief discussion of this subject is presented in Section II of course, special emphasis is given to the more recent information which has appeared. Several areas of current study in the field of transition metal-isocyanide complexes have become particularly important and are discussed in this review in Section III. These include the additions of protonic compounds to coordinated isocyanides, probably the subject most actively being studied at this time insertion reactions into metal-carbon bonded species nucleophilic reactions with metal isocyanide complexes and the metal-catalyzed a-addition reactions. Concurrent with these new developments, there has been a general expansion of descriptive chemistry of isocyanide-metal complexes, and further study of the physical properties of selected species. These developments are summarized in Section IV. [Pg.22]

We have explored rare earth oxide-modified amorphous silica-aluminas as "permanent" intermediate strength acids used as supports for bifunctional catalysts. The addition of well dispersed weakly basic rare earth oxides "titrates" the stronger acid sites of amorphous silica-alumina and lowers the acid strength to the level shown by halided aluminas. Physical and chemical probes, as well as model olefin and paraffin isomerization reactions show that acid strength can be adjusted close to that of chlorided and fluorided aluminas. Metal activity is inhibited relative to halided alumina catalysts, which limits the direct metal-catalyzed dehydrocyclization reactions during paraffin reforming but does not interfere with hydroisomerization reactions. [Pg.563]

In order to improve the selectivity toward the formation of 1,3-PDO, we studied the influence of metal salt additives. While the addition of calcium or copper salts exhibited a moderate influence, the presence of iron salts played a significant role on the rate and selectivity of the reaction (Figure 35.1). The metal additives reduced noticeably the activity of the rhodium catalysts suggesting that they acted as a surface poison, but they modified the selectivity of the glycerol hydrogenolysis, probably through selective diol chelation. [Pg.315]

The multi-component systems developed quite recently have allowed the efficient metal-catalyzed stereoselective reactions with synthetic potential [75-77]. Multi-components including a catalyst, a co-reductant, and additives cooperate with each other to construct the catalytic systems for efficient reduction. It is essential that the active catalyst is effectively regenerated by redox interaction with the co-reductant. The selection of the co-reductant is important. The oxidized form of the co-reductant should not interfere with, but assist the reduction reaction or at least, be tolerant under the conditions. Additives, which are considered to contribute to the redox cycle directly, possibly facilitate the electron transfer and liberate the catalyst from the reaction adduct. Co-reductants like Al, Zn, and Mg are used in the catalytic reactions, but from the viewpoint of green chemistry, an electron source should be environmentally harmonious, such as H2. [Pg.83]

We have also observed competition between products resulting from C-C and C-H bond activation in reactions of Y with propene,138 propyne,143 2-butyric,143 four butene isomers,138 acetaldehyde,128 acetone,128 ketene,144 and two cyclohexadiene isomers,145 as well as for Zr, Nb, Mo, and Mo with 2-butyne.143 In this chapter, we use the term C-C activation to describe any reaction leading to C-C bond fission in which the hydrocarbon reactant is broken into two smaller hydrocarbon products, with one hydrocarbon bound to the metal. It is important to note, however, that C-C activation does not necessarily require true C-C insertion. As will be shown in this chapter, the reaction of Y, the simplest second-row transition metal atom, with propene leads to formation of YCH2 +C2H4. The mechanism involves addition to the C=C bond followed by H atom migration and C-C bond fission, rather than by true C-C insertion. [Pg.235]

A few further general examples of zinc catalytic activity or reactivity include the following. Other zinc-containing systems include a zinc phenoxide/nickel(0) catalytic system that can be used to carry out the chemo- and regioselective cyclotrimerization of monoynes.934 Zinc homoenolates have been used as novel nucleophiles in acylation and addition reactions and shown to have general utility.935,936 Iron/zinc species have been used in the oxidation of hydrocarbons, and the selectivity and conditions examined.362 There are implications for the mechanism of metal-catalyzed iodosylbenzene reactions with olefins from the observation that zinc triflate and a dizinc complex catalyze these reactions.937... [Pg.1231]


See other pages where Metal-activated addition reactions is mentioned: [Pg.287]    [Pg.290]    [Pg.2506]    [Pg.136]    [Pg.101]    [Pg.298]    [Pg.478]    [Pg.1128]    [Pg.944]    [Pg.285]    [Pg.286]    [Pg.442]    [Pg.23]    [Pg.174]    [Pg.371]    [Pg.372]    [Pg.298]    [Pg.6]    [Pg.743]    [Pg.204]    [Pg.571]    [Pg.212]    [Pg.40]    [Pg.253]    [Pg.650]    [Pg.127]    [Pg.130]    [Pg.94]    [Pg.85]    [Pg.86]   
See also in sourсe #XX -- [ Pg.4 , Pg.551 , Pg.552 , Pg.553 , Pg.554 , Pg.555 , Pg.556 , Pg.557 , Pg.558 , Pg.559 , Pg.560 , Pg.561 , Pg.562 , Pg.563 , Pg.564 ]

See also in sourсe #XX -- [ Pg.4 , Pg.551 , Pg.552 , Pg.553 , Pg.554 , Pg.555 , Pg.556 , Pg.557 , Pg.558 , Pg.559 , Pg.560 , Pg.561 , Pg.562 , Pg.563 , Pg.564 ]




SEARCH



Metal additives

Metallation addition reactions

Metals addition

© 2024 chempedia.info