Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metabolism covalent modification

Metabolic pathways are regulated by rapid mechanisms affecting the activity of existing enzymes, eg, allosteric and covalent modification (often in response to hormone action) and slow mechanisms affecting the synthesis of enzymes. [Pg.129]

The principal enzymes controlling glycogen metabolism—glycogen phosphorylase and glycogen synthase— are regulated by allosteric mechanisms and covalent modifications due to reversible phosphorylation and... [Pg.147]

Ghanges in the availability of substrates are responsible for most changes in metabolism either directly or indirectly acting via changes in hormone secretion. Three mechanisms are responsible for regulating the activity of enzymes in carbohydrate metabolism (1) changes in the rate of enzyme synthesis, (2) covalent modification by reversible phosphorylation, and (3) allosteric effects. [Pg.155]

K. Mizutani, T. Electronic and structural requirements for metabolic activation of butylated hydroxytoluene analogs to their quinone methides, intermediates responsible for lung toxicity in mice. Biol. Pharm. Bull. 1997, 20, 571-573. (c) McCracken, P. G. Bolton, J. L. Thatcher, G. R. J. Covalent modification of proteins and peptides by the quinone methide from 2-rm-butyl-4,6-dimethylphenol selectivity and reactivity with respect to competitive hydration. J. Org. Chem. 1997, 62, 1820-1825. (d) Reed, M. Thompson, D. C. Immunochemical visualization and identification of rat liver proteins adducted by 2,6-di- m-butyl-4-methylphenol (BHT). Chem. Res. Toxicol. 1997, 10, 1109-1117. (e) Lewis, M. A. Yoerg, D. G. Bolton, J. L. Thompson, J. Alkylation of 2 -deoxynucleosides and DNA by quinone methides derived from 2,6-di- m-butyl-4-methylphenol. Chem. Res. Toxicol. 1996, 9, 1368-1374. [Pg.85]

This sort of control is usually achieved by either covalent modification (phosphorylation or de phosphorylation as in glycogen metabolism) or by proteolytic cleavage (e.g. activation of digestive enzymes in the gut, or blood clotting mechanism. [Pg.69]

There are many examples of phosphorylation/dephosphorylation control of enzymes found in carbohydrate, fat and amino acid metabolism and most are ultimately under the control of a hormone induced second messenger usually, cytosolic cyclic AMP (cAMP). PDH is one of the relatively few mitochondrial enzymes to show covalent modification control, but PDH kinase and PDH phosphatase are controlled primarily by allosteric effects of NADH, acetyl-CoA and calcium ions rather than cAMP (see Table 6.6). [Pg.218]

Metabolism is tightly regulated by a number of mechanisms feedback inhibition, compartmentalization, covalent modification of enzymes (e.g., phosphorylation), and hormone action, among others. [Pg.236]

Fast metabolic adjustments (on the time scale of seconds or less) at the intracellular level are generally allosteric. The effects of hormones and growth factors are generally slower (seconds to hours) and are commonly achieved by covalent modification or changes in enzyme synthesis. [Pg.575]

In Chapters 13 through 22 we have discussed metabolism at the level of the individual cell, emphasizing central pathways common to almost all cells, prokaryotic and eukaryotic. We have seen how metabolic processes within cells are regulated at the level of individual enzyme reactions, by substrate availability, by allosteric mechanisms, and by phosphorylation or other covalent modifications of enzymes. [Pg.881]

The regulation of the reaction velocity of enzymes is essential if an organ ism is to coordinate its numerous metabolic processes. The rates of most enzymes are responsive to changes in substrate concentration, because the intracellular level of many substrates is in the range of the Km. Thus, an increase in substrate concentration prompts an increase in reaction rate, which tends to return the concentration of substrate toward normal. In addition, some enzymes with specialized regulatory functions respond to allosteric effectors or covalent modification, or they show altered rates of enzyme synthesis when physiologic conditions are changed. [Pg.62]

The flow of intermediates through metabolic pathways is controlled by 1bir mechanisms 1) the availability of substrates 2) allosteric activation and inhibition of enzymes 3) covalent modification of enzymes and 4) induction-repression of enzyme synthesis. This scheme may at first seem unnecessarily redundant however, each mechanism operates on a different timescale (Figure 24.1), and allows the body to adapt to a wde variety of physiologic situations. In the fed state, these regulatory mechanisms ensure that available nutrients are captured as glycogen, triacylglycerol, and protein. [Pg.319]

A Few Covalent Modification Reactions Utilized to Control Metabolism... [Pg.543]

Metabolic regulation 535 — 581 control elements of 536 sensitivity coefficient 537 Metabolism. See also Specific compounds activation 507, 508 beta oxidation 511, 512 control by covalent modification reactions table 543... [Pg.923]

Phosphorylation also can modify an enzyme s sensi-tivity to allosteric effectors. Phosphorylation of glycogen phosphorylase reduces its sensitivity to the allosteric activator adenosine monophosphate (AMP). Thus, a covalent modification triggered by an extracellular signal can override the influence of intracellular allosteric regulators. In other cases, variations in the concentrations of intracellular effectors can modify the response to the covalent modification, depending on the metabolic state of affairs in the cell. [Pg.178]

A reversible covalent modification that plants use extensively is the reduction of cystine disulfide bridges to sulf-hydryls. Many of the enzymes of photosynthetic carbohydrate synthesis are activated in this way (table 9.3). Some of the enzymes of carbohydrate breakdown are inactivated by the same mechanism. The reductant is a small protein called thioredoxin, which undergoes a complementary oxidation of cysteine residues to cystine (fig. 9.5). Thioredoxin itself is reduced by electron-transfer reactions driven by sunlight, which serves as a signal to switch carbohydrate metabolism from carbohydrate breakdown to synthesis. In one of the regulated enzymes, phosphoribulokinase, one of the freed cysteines probably forms part of the catalytic active site. In nicotinamide-adenine dinucleotide phosphate (NADP)-malate dehydrogenase and fructose-1,6-bis-... [Pg.178]

Covalent modifications of enzymes allow a cell to regulate its metabolic activities more rapidly and in much more intricate ways than is possible by changing the absolute concentrations of the same enzymes. They still do not provide truly instantaneous responses to changes in conditions, however, because each modification requires the action of... [Pg.179]

Cells regulate their metabolic activities by controlling rates of enzyme synthesis and degradation and by adjusting the activities of specific enzymes. Enzyme activities vary in response to changes in pH, temperature, and the concentrations of substrates or products, but also can be controlled by covalent modifications of the protein or by interactions with activators or inhibitors. [Pg.195]


See other pages where Metabolism covalent modification is mentioned: [Pg.463]    [Pg.758]    [Pg.238]    [Pg.642]    [Pg.111]    [Pg.55]    [Pg.78]    [Pg.226]    [Pg.305]    [Pg.153]    [Pg.25]    [Pg.448]    [Pg.568]    [Pg.211]    [Pg.642]    [Pg.107]    [Pg.194]    [Pg.225]    [Pg.225]    [Pg.232]    [Pg.232]    [Pg.602]    [Pg.621]    [Pg.752]    [Pg.838]    [Pg.327]    [Pg.331]    [Pg.522]    [Pg.178]    [Pg.180]   
See also in sourсe #XX -- [ Pg.762 , Pg.762 ]




SEARCH



Covalent modification

Covalent modification in control of metabolism

Metabolic control Covalent modification

Metabolic regulation covalent enzyme modification

Metabolism control by covalent modification

© 2024 chempedia.info