Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mercury chemical reaction

Miscellaneous Atomization Methods A few elements may be atomized by a chemical reaction that produces a volatile product. Elements such as As, Se, Sb, Bi, Ge, Sn, Te, and Pb form volatile hydrides when reacted with NaBH4 in acid. An inert gas carries the volatile hydrides to either a flame or to a heated quartz observation tube situated in the optical path. Mercury is determined by the cold-vapor method in which it is reduced to elemental mercury with SnCb- The volatile Hg is carried by an inert gas to an unheated observation tube situated in the instrument s optical path. [Pg.415]

Here, the relative stability of the anion radical confers to the cleavage process a special character. Thus, at a mercury cathode and in organic solvents in the presence of tetraalkylammonium salts, the mechanism is expected16 to be an ECE one in protic media or in the presence of an efficient proton donor, but of EEC type in aprotic solvents. In such a case, simple electron-transfer reactions 9 and 10 have to be associated chemical reactions and other electron transfers (at the level of the first step). Those reactions are shown below in detail ... [Pg.1006]

The principles outlined above are, of course, important in electro-synthetic reactions. The pH of the electrolysis medium, however, also affects the occurrence and rate of proton transfers which follow the primary electron transfer and hence determine the stability of electrode intermediates to chemical reactions of further oxidation or reduction. These factors are well illustrated by the reduction at a mercury cathode of aryl alkyl ketones (Zuman et al., 1968). In acidic solution the ketone is protonated and reduces readily to a radical which may be reduced further only at more negative potentials. [Pg.179]

Before considering the role of the electrode material in detail, there is one further factor which should be pointed out. The product of an electrode process may be dependent on the timescale of the contact between the electroactive species and the electrode surface, particularly when a chemical reaction is sandwiched between two electron transfers in the overall process. This was first realized when it was found that ir E curves and reaction products at a dropping mercury electrode were not always the same as those at a mercury pool electrode (Zuman, 1967a). For example, the reduction of p-diacetylbenzene at a mercury pool was found to be a four-electron process, giving rise to the dialcohol, while at a dropping mercury electrode the product was formed by a two-electron process where only one keto group was reduced (Kargin et al., 1966). These facts were interpreted in terms of the mechanism... [Pg.192]

In this final section, the global cycles of two metals, mercury and copper, are reviewed. These metals were chosen because their geochemical cycles have been studied extensively, and their chemical reactions exemplify the full gamut of reactions described earlier. In addition, the chemical forms of the two metals are sufficiently different from one another that they behave differently with respect to dominant... [Pg.406]

The reduction of formaldehyde at a mercury electrode is an example of a system in which a chemical reaction precedes the electrode reaction. Formaldehyde is present in aqueous solution as the hydrated form (as dihydroxy methane), which cannot be reduced at a mercury electrode. This form is in equilibrium with the carbonyl form... [Pg.360]

A chemical reaction subsequent to a fast (reversible) electrode reaction (Eq. 5.6.1, case b) can consume the product of the electrode reaction, whose concentration in solution thus decreases. This decreases the overpotential of the overall electrode process. This mechanism was proposed by R. Brdicka and D. H. M. Kern for the oxidation of ascorbic acid, converted by a fast electrode reaction at the mercury electrode to form dehydro-ascorbic acid. An equilibrium described by the Nernst equation is established at the electrode between the initial substance and this intermediate product. Dehydroascorbic acid is then deactivated by a fast chemical reaction with water to form diketogulonic acid, which is electroinactive. [Pg.361]

This reduction step can be readily observed at a mercury electrode in an aprotic solvent or even in aqueous medium at an electrode covered with a suitable surfactant. However, in the absence of a surface-active substance, nitrobenzene is reduced in aqueous media in a four-electron wave, as the first step (Eq. 5.9.3) is followed by fast electrochemical and chemical reactions yielding phenylhydroxylamine. At even more negative potentials phenylhydroxylamine is further reduced to aniline. The same process occurs at lead and zinc electrodes, where phenylhydroxylamine can even be oxidized to yield nitrobenzene again. At electrodes such as platinum, nickel or iron, where chemisorption bonds can be formed with the products of the... [Pg.397]

We classify the elements to the left of this line, excluding the metalloids and hydrogen, as the metals. The metals have physical properties that we normally associate with metals in the everyday world—they are solids (with the exception of mercury), they have a metallic luster, and are good conductors of both electricity and heat. They are malleable (capable of being hammered into thin sheets) and ductile (capable of being drawn into thin wires). And as we will see later in this book, the metals tend to lose electrons in chemical reactions. [Pg.18]

Cold vapor mercury Light absorbed by atoms of mercury generated by chemical reaction at room temperature is measured An excellent technique for mercury analysis... [Pg.267]

For the familiar dropping mercury electrode, the electrical potential 1J1 at the metal surface relative to the bulk region of the electrolyte is controlled by an external potential source - a constant voltage source. In this case, can be set to any value (within reasonable physical limits) as the mercury/electrolyte interface does not allow charge transfer or chemical reactions to occur (at least to a good approximation for the case of NaF). Therefore, we can say that the equation of state of the mercury surface is... [Pg.100]

The alchemists believed that a most minute proportion of the Stone projected upon considerable quantities of heated mercury, molten lead, or other "base" metal, would transmute practically the whole into silver or gold. This claim of the alchemists, that a most minute quantity of the Stone was sufficient to transmute considerable quantities of base" metal, has been the object of much ridicule. Certainly, some of the claims of the alchemists (understood literally) are out of all reason but on the other hand, the disproportion between the quantities of Stone and transmuted metal cannot be advanced as an a priori objection to the alchemists claims, inasmuch that a class of chemical reactions (called "catalytic") is known, in which the presence of a small quantity of some appropriate form of matter — the catalyst — brings about a chemical change in an indefinite quantity of some other form or forms thus, for example, cane-sugar in aqueous solution is converted into two other sugars by the action of small quantities of acid and sulphur-dioxide and oxygen, which will not combine under ordinary conditions, do so readily in the presence of a small quantity... [Pg.31]

All ECi adsorption coupled mechanisms have been verified by experiments with azobenzene/hydrazobenzene redox couple at a hanging mercury drop electrode [86,128,130]. As mentioned in Sect. 2.5.3, azobenzene undergoes a two-electron and two-proton chemically reversible reduction to hydrazobenzene (reaction 2.202). In an acidic medium, hydrazobenzene rearranges to electrochemically inactive benzidine, through a chemically irreversible follow-up chemical reaction (reaction 2.203). The rate of benzidine rearrangement is controlled by the proton concentration in the electrolyte solution. Both azobenzene and hydrazobenzene, and probably benzidine, adsorb strongly on the mercury electrode surface. [Pg.118]

Elements and compounds constitute the world of pure substances. An element is a substance that cannot be decomposed by any chemical reaction into simpler substances. Elements are composed of only one type of atom and all atoms of a given type have the same properties. Pure substances cannot be separated into other kinds of matter by any physical process. We are familiar with many pure substances water, iron, mercury, iodine, helium, rust, diamond, table salt, sugar, gypsum, and so forth. Among the pure substances listed above, iron, mercury, iodine, diamond (pure carbon), and helium are elements. We are also familiar with mixtures of pure substances. These include the air that we breathe, milk, molasses, beer, blood, coffee, concrete, egg whites, ice cream, dirt, steel, and so on. [Pg.38]

Transition metah—found in the groups located in the center of the periodic table, plus the lanthanide and actinide series. They are all solids, except mercury, and are the only elements whose shells other than their outer shells give up or share electrons in chemical reactions. Transition metals include the 38 elements from groups 3 through 12. They exhibit several oxidation states (oxidation numbers) and various levels of electronegativity, depending on their size and valence. [Pg.37]

Metals are extremely important not only for chemical reactions but also for the health and welfare of plants and animals. Some examples of metals required for good nutrition, even in trace amounts, are iron, copper, cobalt, potassium, sodium, and zinc. Other metals—for example, mercury, lead, cadmium, barium, beryllium, radium, and uranium—are very toxic. Some metals at the atomic and ionic levels are crucial for the oxidation process that metabolizes carbohydrates for all living cells. [Pg.37]

The electrochemical rate constants of the Zn(II)/Zn(Hg) system obtained in propylene carbonate (PC), acetonitrile (AN), and HMPA with different concentrations of tetraethylammonium perchlorate (TEAP) decreased with increasing concentration of the electrolyte and were always lower in AN than in PC solution [72]. The mechanism of Zn(II) electroreduction was proposed in PC and AN the electroreduction process proceeds in one step. In HMPA, the Zn(II) electroreduction on the mercury electrode is very slow and proceeds according to the mechanism in which a chemical reaction was followed by charge transfer in two steps (CEE). The linear dependence of logarithm of heterogeneous standard rate constant on solvent DN was observed only for values corrected for the double-layer effect. [Pg.734]

Electroreduction of Cd(II)-nitrilotriace-tic acid and Cd(II)-aspartic acid systems was studied on DME using SWV [73]. The CE mechanism in which the chemical reaction precedes a reversible electron transfer was established. Also, the rate constants of dissociation of the complexes were determined. Esteban and coworkers also studied the cadmium complexes with nitrilotriacetic acid [74, 75] and fulvic acid [76]. The complexation reaction of cadmium by glycine was investigated by different electrochemical methods using HMDE and mercury microelectrode [77, 78]. [Pg.775]

Analogous to the electrode behavior of cystine and cysteine, one may expect chemical reaction occurring between mercury and protein disulfide bonds. Honeychurch and Ridd [99] have proved the correctness of such reaction pathway, applying poten-tiometric stripping analysis to investigate... [Pg.974]

But, if atoms were little balls that always united in the same simple ratios to make compound particles , this explained why chemical reactions between elements always took place in constant and simple proportions. It was why, for example, a certain mass of mercury always combined, during calcination, with another fixed mass of oxygen. French chemist Louis Joseph Proust enshrined this principle in his Law of Definite Proportions in 1788. Not that... [Pg.69]

Another area of concern that has not received adequate attention is the possible contamination of the sulfur products. Feedstocks to these refineries will contain a full spectrum of the elements of the periodic table. Theoretical analysis indicates that certain of these materials may undergo chemical reactions and end up in the sulfur plant feed. Theoretically, we can expect a significant contaimination by arsenic, selenium, tellurium, and perhaps mercury. ... [Pg.34]


See other pages where Mercury chemical reaction is mentioned: [Pg.256]    [Pg.92]    [Pg.428]    [Pg.14]    [Pg.144]    [Pg.235]    [Pg.193]    [Pg.194]    [Pg.54]    [Pg.288]    [Pg.220]    [Pg.78]    [Pg.810]    [Pg.125]    [Pg.323]    [Pg.88]    [Pg.121]    [Pg.18]    [Pg.220]    [Pg.44]    [Pg.54]    [Pg.228]    [Pg.145]    [Pg.356]    [Pg.167]    [Pg.125]    [Pg.685]    [Pg.697]   
See also in sourсe #XX -- [ Pg.607 ]




SEARCH



Mercury reaction

© 2024 chempedia.info