Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mercury and metal

Heat must be guarded in this operation, since it would resolve the subeulphide into a protosulphide of mercury and.metal, thus—... [Pg.579]

Mercury has been used for more fhan 150 years in dental silver amalgams. Dental silver amalgams in tooth fillings are composed of a mixture of 50% metalhc mercury and metal powder, usuaUy silver, tin, copper and zinc. [Pg.812]

Only a few reports are available on reactions via acylsodium derivatives. Wanklyn [47] carried out a reaction of ethyl sodium, formed from Et2Zn and metallic sodium, with CO and observed the formation of diethyl ketone (Eq. (5.43)). Later, Schluback prepared ethyl sodium from ethyl mercury and metallic sodium and then reacted it with CO. Triethylcarbinol was obtained in addition to diethyl ketone [48], Ryang and Tsutsumi [49] reported the formation of different compounds for reactions using different solvents (Eqs. (5.44) and (5.45)). [Pg.145]

Trialkyl alanes are also produced when mercury and metallic aluminum are stirred with molten sodium tetraalkyl alanate (319). Sodium amalgam is formed by the reaction... [Pg.266]

The more noble metals (for example copper, mercury and silver) can form oxides, and exhibit variable oxidation state in such compounds (for example CU2O, CuO), but it is not easy to prepare such oxides by direct action of oxygen on the metal, and elevated temperatures are necessary. Moreover, in the case of silver and mercury, loss of oxygen from the oxide by heating is easy. The oxidesare, however, basic (for example Ag20 - Ag, CuO - Cu in acids). [Pg.286]

Unlike cadmium and mercury and, in fact, all metals of Group II, zinc dissolves readily in alkalis forming zincates. in which the zinc atom is contained in a complex hydroxo-anion, for example ... [Pg.418]

The metal is slowly oxidised by air at its boiling point, to give red mercury(II) oxide it is attacked by the halogens (which cannoi therefore be collected over mercury) and by nitric acid. (The reactivity of mercury towards acids is further considered on pp. 436, 438.) It forms amalgams—liquid or solid—with many other metals these find uses as reducing agents (for example with sodium, zinc) and as dental fillings (for example with silver, tin or copper). [Pg.435]

Rubidium can be liquid at room temperature. It is a soft, silvery-white metallic element of the alkali group and is the second most electropositive and alkaline element. It ignites spontaneously in air and reacts violently in water, setting fire to the liberated hydrogen. As with other alkali metals, it forms amalgams with mercury and it alloys with gold, cesium, sodium, and potassium. It colors a flame yellowish violet. Rubidium metal can be prepared by reducing rubidium chloride with calcium, and by a number of other methods. It must be kept under a dry mineral oil or in a vacuum or inert atmosphere. [Pg.91]

Acetylene Bromine, chlorine, brass, copper and copper salts, fluorine, mercury and mercury salts, nitric acid, silver and silver salts, alkali hydrides, potassium metal... [Pg.1207]

In the case of atoms UPS is unlikely to produce information which is not available from other sources. In addition many materials have such low vapour pressures that their UPS spectra may be recorded only at high temperatures. The noble gases, mercury and, to some extent, the alkali metals are exceptions but we will consider here only the specttum of argon. [Pg.297]

Coalition ofJSlortheast Governors. The CONEG model heavy-metal guideline is implemented through state regulations and limits total metal content of lead, chromium, mercury, and cadmium. The limitation of 100 parts per million total is aimed at protecting the environment from the disposal of post-consumer waste. [Pg.254]

Other recovery methods have been used (10). These include leaching ores and concentrates using sodium sulfide [1313-82-2] and sodium hydroxide [1310-73-2] and subsequentiy precipitating with aluminum [7429-90-3], or by electrolysis (11). In another process, the mercury in the ore is dissolved by a sodium hypochlorite [7681-52-9] solution, the mercury-laden solution is then passed through activated carbon [7440-44-0] to absorb the mercury, and the activated carbon heated to produce mercury metal. Mercury can be extracted from cinnabar by electrooxidation (12,13). [Pg.107]

Toxicity. Inorganic mercury compounds, aryl mercury compounds, and alkoxy mercurials are generahy considered to be quite similar in their toxicity. Alkyl mercury compounds are considered to be substantiahy more toxic and hazardous. Mercury and its compounds can be absorbed by ingestion, absorption through the skin, or by inhalation of the vapor. The metal itself, however, rarely produces any harmful effects when ingested (16). [Pg.116]

Mercury amalgamates readily with gold and silver, and systems have been developed using these metals distributed on various carriers to remove mercury vapor from an akstream. When the system is saturated, the mercury can be removed easily and recovered by heating the unit and condensing the mercury. Other metals, such as copper and 2inc, can also be used. [Pg.117]

Sulfur Polymer Cement. SPC has been proven effective in reducing leach rates of reactive heavy metals to the extent that some wastes can be managed solely as low level waste (LLW). When SPC is combined with mercury and lead oxides (both toxic metals), it interacts chemically to form mercury sulfide, HgS, and lead sulfide, PbS, both of which are insoluble in water. A dried sulfur residue from petroleum refining that contained 600-ppm vanadium (a carcinogen) was chemically modified using dicyclopentadiene and oligomer of cyclopentadiene and used to make SC (58). This material was examined by the California Department of Health Services (Cal EPA) and the leachable level of vanadium had been reduced to 8.3 ppm, well below the soluble threshold limit concentration of 24 ppm (59). [Pg.126]

Environmental Concerns. Dyes, because they are intensely colored, present special problems in effluent discharge even a very small amount is noticeable. However, the effect is more aesthetically displeasing rather than ha2ardous, eg, red dyes discharged into rivers and oceans. Of more concern is the discharge of toxic heavy metals such as mercury and chromium. [Pg.301]

Air-poUutant effects on neural and sensory functions in humans vary widely. Odorous pollutants cause only minor annoyance yet, if persistent, they can lead to irritation, emotional upset, anorexia, and mental depression. Carbon monoxide can cause death secondary to the depression of the respiratory centers of the central nervous system. Short of death, repeated and prolonged exposure to carbon monoxide can alter sensory protection, temporal perception, and higher mental functions. Lipid-soluble aerosols can enter the body and be absorbed in the lipids of the central nervous system. Once there, their effects may persist long after the initial contact has been removed. Examples of agents of long-term chronic effects are organic phosphate pesticides and aerosols carrying the metals lead, mercury, and cadmium. [Pg.2179]

Metals in the platinum family are recognized for their ability to promote combustion at lowtemperatures. Other catalysts include various oxides of copper, chromium, vanadium, nickel, and cobalt. These catalysts are subject to poisoning, particularly from halogens, halogen and sulfur compounds, zinc, arsenic, lead, mercury, and particulates. It is therefore important that catalyst surfaces be clean and active to ensure optimum performance. [Pg.2190]


See other pages where Mercury and metal is mentioned: [Pg.623]    [Pg.35]    [Pg.25]    [Pg.1030]    [Pg.288]    [Pg.81]    [Pg.220]    [Pg.35]    [Pg.623]    [Pg.35]    [Pg.25]    [Pg.1030]    [Pg.288]    [Pg.81]    [Pg.220]    [Pg.35]    [Pg.411]    [Pg.24]    [Pg.181]    [Pg.52]    [Pg.502]    [Pg.10]    [Pg.15]    [Pg.107]    [Pg.109]    [Pg.114]    [Pg.114]    [Pg.129]    [Pg.491]    [Pg.534]    [Pg.26]    [Pg.33]    [Pg.228]    [Pg.542]    [Pg.481]    [Pg.136]    [Pg.1600]    [Pg.35]   
See also in sourсe #XX -- [ Pg.220 ]




SEARCH



Mercury and

Mercury metals

Metallic mercury

© 2024 chempedia.info