Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membranes polymeric membrane examples

Leading Examples These apphcations are commercial, some on a very large scale. They illustrate the range of application for gas-separation membranes. Unless otherwise specified, all use polymeric membranes. [Pg.2047]

Consider an equilibrium-limited esterification reaction. One way to drive the reaction to completion is to remove the water formed by the reaction selectively through a membrane. This can be an attractive strategy when higher temperatures are undesirable due to factors like colouration of the materials and formation of undesirable products even though these may be present at a low level. As another example, consider the air oxidation of cyclohexane or cyclododecane to cyclohexanone/-ol or cyclododecanone/-ol, where the product can undergo more facile oxidation to unwanted or much lower value products. Consequently, industrial processes operate at a level of less than 5% conversion. If a membrane can selectively remove cyclohexanone as it is formed, the problems mentioned above can be thwarted. However, selective polymeric membranes, which can work at oxidation temperature, have not yet been proved. [Pg.171]

Potentiometry is the measurement of the potential at an electrode or membrane electrode, so the detector response is in units of volts. The potentio-metric response tends to be slow, so potentiometry is used infrequently in analysis.47 One example is the use of a polymeric membrane impregnated with ionophores for the selective detection of potassium, sodium, ammonium, and calcium 48 In process chromatography, potentiometry may be used to monitor selected ions or pH as these values change over the course of the gradient. [Pg.220]

The anion optical sensor can also be fabricated with metalloporphyr-ins. For example, polymeric membranes doped with indium porphyrins and a lipophilic dichlorofluorescein derivative were shown to be very selective to chloride and acetate anions. The response mechanism is based on extraction of anions into the bulk organic film by indium porphyrins and a simultaneous coextraction of hydrogen ions. This results in protonation of the pH chromophore, and hence a change in the optical absorbance of the polymeric film. [Pg.769]

In the following, a number of integrated reaction-separation systems wiU be discussed, with emphasis on the application of polymeric membranes. As a result, the systems discussed will be Hmited to relatively low temperatures, typically below 120°C. In Section 13.2, appHcations of membranes in chemical synthesis will be described. Subsequently, in Section 13.3 various examples of membrane bioreactors will be discussed. [Pg.527]

However, the variety of composite materials to be elaborated by the method is still barely explored. For example, bi- and multimetallic nanoparticles, included in different matrices (polymeric membranes, porous supports,. ..) or functionalized, have promising applications. New methods of cluster characterization at this extremely low size scale are developed and will improve their study. [Pg.613]

Most modern materials are formed empirically by solid-state methods. These methods generally involve more processing activity than chemical synthesis (for example, sintering of ceramic powders, modifying concrete by polymers, thermomechanical processing of alloys, layering polymeric membranes for... [Pg.6]

Membranes made by the Loeb-Sourirajan process consist of a single membrane material, but the porosity and pore size change in different layers of the membrane. Anisotropic membranes made by other techniques and used on a large scale often consist of layers of different materials which serve different functions. Important examples are membranes made by the interfacial polymerization process discovered by Cadotte [15] and the solution-coating processes developed by Ward [16], Francis [17] and Riley [18], The following sections cover four types of anisotropic membranes ... [Pg.97]

The most extensive studies of plasma-polymerized membranes were performed in the 1970s and early 1980s by Yasuda, who tried to develop high-performance reverse osmosis membranes by depositing plasma films onto microporous poly-sulfone films [60,61]. More recently other workers have studied the gas permeability of plasma-polymerized films. For example, Stancell and Spencer [62] were able to obtain a gas separation plasma membrane with a hydrogen/methane selectivity of almost 300, and Kawakami et al. [63] have reported plasma membranes... [Pg.124]

A wide variety of polymeric membranes with different barrier properties is already available, many of them in various formats and with various dedicated specifications. The ongoing development in the field is very dynamic and focused on further increasing barrier selectivities (if possible at maximum transmembrane fluxes) and/ or improving membrane stability in order to broaden the applicability. This tailoring of membrane performance is done via various routes controlled macro-molecular synthesis (with a focus on functional polymeric architectures), development of advanced polymer blends or mixed-matrix materials, preparation of novel composite membranes and selective surface modification are the most important trends. Advanced functional polymer membranes such as stimuli-responsive [54] or molecularly imprinted polymer (MIP) membranes [55] are examples of the development of another dimension in that field. On that basis, it is expected that polymeric membranes will play a major role in process intensification in many different fields. [Pg.40]

Pertraction (PT) can be realized through a liquid membrane, but also through a nonporous polymeric membrane that was applied also industrially [10-12]. Apart from various types of SLM and BLM emulsion liquid membranes (ELM) were also widely studied just at the beginning of liquid membrane research. For example, an emulsion of stripping solution in organic phase, stabilized by surfactant, is dispersed in the aqueous feed. The continuous phase of emulsion forms ELM. Emulsion and feed are usually contacted in mixed column or mixer-settlers as in extraction. EML were applied industrially in zinc recovery from waste solution and in several pilot-plant trials [13,14], but the complexity of the process reduced interest in this system. More information on ELM and related processes can be found in refs. [8, 13-16]. [Pg.515]

Finally, anionically conducting polymeric membranes are currently being developed for use in fuel cells, particularly direct alcohol cells, where such membranes appear to expel CO2 even at high OH--ion concentrations in the membrane. A simple example is shown in Fig. 7. [Pg.522]


See other pages where Membranes polymeric membrane examples is mentioned: [Pg.154]    [Pg.779]    [Pg.511]    [Pg.527]    [Pg.568]    [Pg.287]    [Pg.297]    [Pg.298]    [Pg.311]    [Pg.316]    [Pg.12]    [Pg.449]    [Pg.135]    [Pg.34]    [Pg.35]    [Pg.67]    [Pg.349]    [Pg.412]    [Pg.371]    [Pg.13]    [Pg.213]    [Pg.132]    [Pg.107]    [Pg.46]    [Pg.154]    [Pg.36]    [Pg.289]    [Pg.468]    [Pg.16]    [Pg.17]    [Pg.485]    [Pg.485]    [Pg.526]   


SEARCH



Membranes examples

Polymeric membranes

© 2024 chempedia.info