Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane shuttle

Nakamura, R., T. Furuno, and M. Nakanishi. 2006. The plasma membrane shuttling of CAPRI is related to regulation of mast cell activation. Biochem Biophys... [Pg.637]

In the membrane flow model of Fig. 1-7, membranes move through the cell from ER—> Golgi apparatus— secretory vacuoles— plasma membrane. In the membrane shuttle proposal, the vesicles shuttle between ER and Golgi apparatus, while secretory vacuoles shuttle back and forth between the Golgi apparatus and the plasma membrane. [Pg.8]

Baumann B, Weber CK, Troppmair J, Whiteside S, Israel A, Rapp UR, Wirth T. Raf induces NF-kB by membrane shuttle kinase MEKKl, a signaling pathway critical for transformation. Proc.Natl.Acad.Sci.U.S.A. 97 (2000) 4615 620. [Pg.161]

Fig. 1-7 Possible membrane-exchange pathways during secretion of protein from a cell, (a) Membrane flow and (b) membrane shuttles. Fig. 1-7 Possible membrane-exchange pathways during secretion of protein from a cell, (a) Membrane flow and (b) membrane shuttles.
The advent of these powerful and highly lipophilic anionophores raises the possibility of new applications, for example, in the area of membrane chemistry. An early result is the discovery that 14 and 15 can serve as trans-locases for phospholipids, promoting the fra/ 5-membrane shuttling of polar, phosphate-containing head groups. [Pg.1367]

The process of active transport allows a cell to maintain its proper electrolyte balance. To keep the ion concentrations at the proper levels shown in Table IB, a sodium-potassium pump embedded in the cell membrane shuttles sodium ions out of the cell across the cell membrane. A model for the action of the sodium-potassium pump is shown in the figure below. [Pg.744]

The final step of the reaction involves the transfer of two electrons from iron-sulfur clusters to coenzyme Q. Coenzyme Q is a mobile electron carrier. Its isoprenoid tail makes it highly hydrophobic, and it diffuses freely in the hydrophobic core of the inner mitochondrial membrane. As a result, it shuttles electrons from Complexes I and II to Complex III. The redox cycle of UQ is shown in Figure 21.5, and the overall scheme is shown schematically in Figure 21.6. [Pg.682]

This is a crucial point because (as we will see) proton transport is coupled with ATP synthesis. Oxidation of one FADHg in the electron transport chain results in synthesis of approximately two molecules of ATP, compared with the approximately three ATPs produced by the oxidation of one NADH. Other enzymes can also supply electrons to UQ, including mitochondrial 5w-glyc-erophosphate dehydrogenase, an inner membrane-bound shuttle enzyme, and the fatty acyl-CoA dehydrogenases, three soluble matrix enzymes involved in fatty acid oxidation (Figure 21.7 also see Chapter 24). The path of electrons from succinate to UQ is shown in Figure 21.8. [Pg.684]

Most of the NADH used in electron transport is produced in the mitochondrial matrix space, an appropriate site because NADH is oxidized by Complex I on the matrix side of the inner membrane. Furthermore, the inner mitochondrial membrane is impermeable to NADH. Recall, however, that NADH is produced in glycolysis by glyceraldehyde-3-P dehydrogenase in the cytosol. If this NADH were not oxidized to regenerate NAD, the glycolytic pathway would cease to function due to NAD limitation. Eukaryotic cells have a number of shuttle systems that harvest the electrons of cytosolic NADH for delivery to mitochondria without actually transporting NADH across the inner membrane (Figures 21.33 and 21.34). [Pg.702]

In the glycerophosphate shuttle, two different glycerophosphate dehydrogenases, one in the cytoplasm and one on the outer face of the mitochondrial inner membrane, work together to carry electrons into the mitochondrial matrix (Figure 21.32). NADH produced in the cytosol transfers its electrons to dihydroxyaeetone phosphate, thus reducing it to glyeerol-3-phosphate. This metabolite is reoxidized by the FAD -dependent mitochondrial membrane enzyme to... [Pg.702]

FIGURE 21.34 The malate (oxaloacetate)-aspartate shuttle, which operates across the inner mitochondrial membrane. [Pg.703]

The second electron shuttle system, called the malate-aspartate shuttle, is shown in Figure 21.34. Oxaloacetate is reduced in the cytosol, acquiring the electrons of NADH (which is oxidized to NAD ). Malate is transported across the inner membrane, where it is reoxidized by malate dehydrogenase, converting NAD to NADH in the matrix. This mitochondrial NADH readily enters the electron transport chain. The oxaloacetate produced in this reaction cannot cross the inner membrane and must be transaminated to form aspartate, which can be transported across the membrane to the cytosolic side. Transamination in the cytosol recycles aspartate back to oxaloacetate. In contrast to the glycerol phosphate shuttle, the malate-aspartate cycle is reversible, and it operates as shown in Figure 21.34 only if the NADH/NAD ratio in the cytosol is higher than the ratio in the matrix. Because this shuttle produces NADH in the matrix, the full 2.5 ATPs per NADH are recovered. [Pg.704]

FIGURE 24.9 The formation of acylcar-nitines and their transport across the inner mitochondrial membrane. The process involves the coordinated actions of carnitine acyltrans-ferases on both sides of the membrane and of a translocase that shuttles O-acylcarnitines across the membrane. [Pg.783]

The presently known mammalian AQP0-AQP12 have been localized in tissues involved in fluid transport as well as in nonfluid-transporting tissues (Table 1). Most AQPs are constitutively present in the plasma membrane, whereas some water channels can be triggered to shuttle between intracellular vesicles and the plasma membrane [2]. [Pg.215]

Another pathway is the L-glycerol 3-phosphate shuttle (Figure 11). Cytosolic dihydroxyacetone phosphate is reduced by NADFl to s.n-glycerol 3-phosphate, catalyzed by s,n-glycerol 3-phosphate dehydrogenase, and this is then oxidized by s,n-glycerol 3-phosphate ubiquinone oxidoreductase to dihydroxyacetone phosphate, which is a flavoprotein on the outer surface of the inner membrane. By this route electrons enter the respiratory chain.from cytosolic NADH at the level of complex III. Less well defined is the possibility that cytosolic NADH is oxidized by cytochrome bs reductase in the outer mitochondrial membrane and that electrons are transferred via cytochrome b5 in the endoplasmic reticulum to the respiratory chain at the level of cytochrome c (Fischer et al., 1985). [Pg.133]

Figure 12-14. The creatine phosphate shuttle of heart and skeletal muscle. The shuttle allows rapid transport of high-energy phosphate from the mitochondrial matrix into the cytosol. CKg, creatine kinase concerned with large requirements for ATP, eg, muscular contraction CIC, creatine kinase for maintaining equilibrium between creatine and creatine phosphate and ATP/ADP CKg, creatine kinase coupling glycolysis to creatine phosphate synthesis CK, , mitochondrial creatine kinase mediating creatine phosphate production from ATP formed in oxidative phosphorylation P, pore protein in outer mitochondrial membrane. Figure 12-14. The creatine phosphate shuttle of heart and skeletal muscle. The shuttle allows rapid transport of high-energy phosphate from the mitochondrial matrix into the cytosol. CKg, creatine kinase concerned with large requirements for ATP, eg, muscular contraction CIC, creatine kinase for maintaining equilibrium between creatine and creatine phosphate and ATP/ADP CKg, creatine kinase coupling glycolysis to creatine phosphate synthesis CK, , mitochondrial creatine kinase mediating creatine phosphate production from ATP formed in oxidative phosphorylation P, pore protein in outer mitochondrial membrane.
Certain microbes synthesize small organic molecules, ionophores, that function as shuttles for the movement of ions across membranes. These ionophores contain hy-drophihc centers that bind specific ions and are surrounded by peripheral hydrophobic regions this arrangement allows the molecules to dissolve effectively in the membrane and diffuse transversely therein. Others, Hke the well-smdied polypeptide gramicidin, form channels. [Pg.424]

Red cells provide a useful model for studying the likely movement of gold into and out of cells. Itwas shown that Et3PAuCl moving into red cells binds to glutathione and hemoglobin [84, 85] providing ancillary evidence for the sulfhydryl shuttle. Similarly, [Au(CN)2] has been shown to enter red cells by the sulfhydryl shuttle and its uptake can be blocked by alkylation of membrane thiols [32]. [Pg.305]

The high catalytic activity of enzymes has a number of sources. Every enzyme has a particular active site configured so as to secure intimate contact with the substrate molecule (a strictly defined mutual orientation in space, a coordination of the electronic states, etc.). This results in the formation of highly reactive substrate-enzyme complexes. The influence of tfie individual enzymes also rests on the fact that they act as electron shuttles between adjacent redox systems. In biological systems one often sees multienzyme systems for chains of consecutive steps. These systems are usually built into the membranes, which secures geometric proximity of any two neighboring active sites and transfer of the product of one step to the enzyme catalyzing the next step. [Pg.585]

There seems to be an opportunity to extend the electrochemical process to direct membrane transport that is, with electrodes plated on either side of a facilitated-transport membrane similar to that of Johnson [24]. The shuttling action of the carrier (Fig. 9) could then be brought about by electrochemical reduction and oxidation instead of pressure difference. [Pg.219]

Lipophorin acts as a reusable shuttle between the membrane-bound lipophorin receptors in tissues (Tsuchida and Wells 1990, Gopalapillai et al. 2006) and is not generally endocytosed in the cells (Law and Wells 1989, Arrese et al. 2001, Canavoso et al. 2001). Thus, the intracellular CBP alone seems not to be able to pick up carotenoid from the lipophorin that resides outside of the cell. Cell surface components are thought to be necessary to allow intracellular delivery of carotenoids (Figure 24.6, magnification) (Arrese et al. 2001). The lipid transfer particle (LTP) (Blacklock and Ryan 1994, Tsuchida et al. 1997) on the outer surface of membranes and unknown membrane-spanning factors that specifically transfer carotenoids might be candidates. [Pg.520]

Long-chain fatty acids can slowly cross the mitochondrial membrane by themselves, but this is too slow to keep up with their metabolism. The carnitine shuttle provides a transport mechanism and allows control of (3 oxidation. Malonyl-CoA, a precursor for fatty acid synthesis, inhibits the carnitine shuttle and slows down (3 oxidation (Fig. 13-5). [Pg.177]

One paradigm for membrane transport of iron is the binding of the receptor protein to an iron-free siderophore molecule, followed by exchange of iron from an external ferri-siderophore to the receptor bound iron-free siderophore, and subsequent transfer across the cellular membrane. This shuttle mechanism has been explored in the transport system of ferric pyoverdine in P. aeruginosa (215,216). It is unclear why the bacterial system behaves in this manner, but mutagenesis studies of the protein suggest that residues involved in the closure of the P-barrel will not interact in the same way with the iron-free siderophore as they do with the ferri-siderophore. A similar mechanism has been suggested for A hydrophila and E. coli (182). [Pg.235]

Ubiquinones (coenzymes Q) Q9 and Qi0 are essential cofactors (electron carriers) in the mitochondrial electron transport chain. They play a key role shuttling electrons from NADH and succinate dehydrogenases to the cytochrome b-c1 complex in the inner mitochondrial membrane. Ubiquinones are lipid-soluble compounds containing a redox active quinoid ring and a tail of 50 (Qio) or 45 (Q9) carbon atoms (Figure 29.10). The predominant ubiquinone in humans is Qio while in rodents it is Q9. Ubiquinones are especially abundant in the mitochondrial respiratory chain where their concentration is about 100 times higher than that of other electron carriers. Ubihydroquinone Q10 is also found in LDL where it supposedly exhibits the antioxidant activity (see Chapter 23). [Pg.877]


See other pages where Membrane shuttle is mentioned: [Pg.424]    [Pg.357]    [Pg.186]    [Pg.405]    [Pg.305]    [Pg.424]    [Pg.357]    [Pg.186]    [Pg.405]    [Pg.305]    [Pg.719]    [Pg.722]    [Pg.215]    [Pg.215]    [Pg.568]    [Pg.132]    [Pg.172]    [Pg.99]    [Pg.320]    [Pg.305]    [Pg.88]    [Pg.804]    [Pg.126]    [Pg.168]    [Pg.16]    [Pg.75]    [Pg.185]    [Pg.780]    [Pg.324]    [Pg.542]   
See also in sourсe #XX -- [ Pg.8 ]

See also in sourсe #XX -- [ Pg.7 , Pg.8 ]




SEARCH



Membrane vesicle shuttle

Shuttles

Shuttling

© 2024 chempedia.info