Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

NADH cytosolic

The oxidation of one NADH and the reduction of one UQ by NADH-UQ reductase results in the net transport of protons from the matrix side to the cytosolic side of the inner membrane. The cytosolic side, where H accumulates, is referred to as the P (for positive) face similarly, the matrix side is the N (for negative) face. Some of the energy liberated by the flow of electrons... [Pg.682]

Shuttle Systems Feed the Electrons of Cytosolic NADH into Electron Transport... [Pg.702]

Most of the NADH used in electron transport is produced in the mitochondrial matrix space, an appropriate site because NADH is oxidized by Complex I on the matrix side of the inner membrane. Furthermore, the inner mitochondrial membrane is impermeable to NADH. Recall, however, that NADH is produced in glycolysis by glyceraldehyde-3-P dehydrogenase in the cytosol. If this NADH were not oxidized to regenerate NAD, the glycolytic pathway would cease to function due to NAD limitation. Eukaryotic cells have a number of shuttle systems that harvest the electrons of cytosolic NADH for delivery to mitochondria without actually transporting NADH across the inner membrane (Figures 21.33 and 21.34). [Pg.702]

The Glycerophosphate Shuttle Ensures Efficient Use of Cytosolic NADH... [Pg.702]

In the glycerophosphate shuttle, two different glycerophosphate dehydrogenases, one in the cytoplasm and one on the outer face of the mitochondrial inner membrane, work together to carry electrons into the mitochondrial matrix (Figure 21.32). NADH produced in the cytosol transfers its electrons to dihydroxyaeetone phosphate, thus reducing it to glyeerol-3-phosphate. This metabolite is reoxidized by the FAD -dependent mitochondrial membrane enzyme to... [Pg.702]

FIGURE 21.33 The glycerophosphate shuttle (also known as the glycerol phosphate shuttle) couples the cytosolic oxidation of NADH with mitochondrial reduction of [FAD]. [Pg.703]

The second electron shuttle system, called the malate-aspartate shuttle, is shown in Figure 21.34. Oxaloacetate is reduced in the cytosol, acquiring the electrons of NADH (which is oxidized to NAD ). Malate is transported across the inner membrane, where it is reoxidized by malate dehydrogenase, converting NAD to NADH in the matrix. This mitochondrial NADH readily enters the electron transport chain. The oxaloacetate produced in this reaction cannot cross the inner membrane and must be transaminated to form aspartate, which can be transported across the membrane to the cytosolic side. Transamination in the cytosol recycles aspartate back to oxaloacetate. In contrast to the glycerol phosphate shuttle, the malate-aspartate cycle is reversible, and it operates as shown in Figure 21.34 only if the NADH/NAD ratio in the cytosol is higher than the ratio in the matrix. Because this shuttle produces NADH in the matrix, the full 2.5 ATPs per NADH are recovered. [Pg.704]

NAD+ and NADP+ are coenzymes of dehydrogenases. NADH and NADPH are intermediate carriers of both hydrogen and electrons. Most NAD-dependent enzymes are located in the mitochondria and deliver H2 to the respiratory chain whereas NADP-dependent enzymes take part in cytosolic syntheses (reductive biosyntheses). [Pg.850]

Another pathway is the L-glycerol 3-phosphate shuttle (Figure 11). Cytosolic dihydroxyacetone phosphate is reduced by NADFl to s.n-glycerol 3-phosphate, catalyzed by s,n-glycerol 3-phosphate dehydrogenase, and this is then oxidized by s,n-glycerol 3-phosphate ubiquinone oxidoreductase to dihydroxyacetone phosphate, which is a flavoprotein on the outer surface of the inner membrane. By this route electrons enter the respiratory chain.from cytosolic NADH at the level of complex III. Less well defined is the possibility that cytosolic NADH is oxidized by cytochrome bs reductase in the outer mitochondrial membrane and that electrons are transferred via cytochrome b5 in the endoplasmic reticulum to the respiratory chain at the level of cytochrome c (Fischer et al., 1985). [Pg.133]

Under conditions of copper deficiency, some methanotrophs can express a cytosolic, soluble form of MMO (sMMO) (20-23), the properties of which form the focus of the present review. The sMMO system comprises three separate protein components which have all been purified to homogeneity (24,25). The hydroxylase component, a 251 kD protein, contains two copies each of three subunits in an a 82y2 configuration. The a subunit of the hydroxylase houses the dinuclear iron center (26) responsible for dioxygen activation and for substrate hydroxylation (27). The 38.6 kD reductase contains flavin adenine dinucleotide (FAD) and Fe2S2 cofactors (28), which enable it to relay electrons from reduced nicotinamide adenine dinucleotide (NADH) to the diiron center in the... [Pg.267]

Both ADH and ALDH use NAD+ as cofactor in the oxidation of ethanol to acetaldehyde. The rate of alcohol metabolism is determined not only by the amount of ADH and ALDH2 enzyme in tissue and by their functional characteristics, but also by the concentrations of the cofactors NAD+ and NADH and of ethanol and acetaldehyde in the cellular compartments (i.e., cytosol and mitochondria). Environmental influences on elimination rate can occur through changes in the redox ratio of NAD+/NADH and through changes in hepatic blood flow. The equilib-... [Pg.419]

The MALATE-ASPARTATE SHUTTLE gets reducing equivalents (electrons) from cytosolic NADH into the mitochondria so that 3 ATPs can be made. [Pg.190]

This mechanism is now considered to be of importance for the protection of LDL against oxidation stress, Chapter 25.) The antioxidant effect of ubiquinones on lipid peroxidation was first shown in 1980 [237]. In 1987 Solaini et al. [238] showed that the depletion of beef heart mitochondria from ubiquinone enhanced the iron adriamycin-initiated lipid peroxidation whereas the reincorporation of ubiquinone in mitochondria depressed lipid peroxidation. It was concluded that ubiquinone is able to protect mitochondria against the prooxidant effect of adriamycin. Inhibition of in vitro and in vivo liposomal, microsomal, and mitochondrial lipid peroxidation has also been shown in studies by Beyer [239] and Frei et al. [240]. Later on, it was suggested that ubihydroquinones inhibit lipid peroxidation only in cooperation with vitamin E [241]. However, simultaneous presence of ubihydroquinone and vitamin E apparently is not always necessary [242], although the synergistic interaction of these antioxidants may take place (see below). It has been shown that the enzymatic reduction of ubiquinones to ubihydroquinones is catalyzed by NADH-dependent plasma membrane reductase and NADPH-dependent cytosolic ubiquinone reductase [243,244]. [Pg.878]

There are many examples of phosphorylation/dephosphorylation control of enzymes found in carbohydrate, fat and amino acid metabolism and most are ultimately under the control of a hormone induced second messenger usually, cytosolic cyclic AMP (cAMP). PDH is one of the relatively few mitochondrial enzymes to show covalent modification control, but PDH kinase and PDH phosphatase are controlled primarily by allosteric effects of NADH, acetyl-CoA and calcium ions rather than cAMP (see Table 6.6). [Pg.218]

Some calculations put this figure as high as 38 moles of ATP depending on assumptions made about the use of NADH generated in the cytosol to contribute to ATP production in the mitochondria. [Pg.249]

The three major fnels for oxidation within the mitochondria are pymvate, fatty acids in the form of fatty acyl-camitine, and glntamine - all of which require specific transport processes (Fignre 9.14). The hydrogen atoms in the NADH in the cytosol comprise a fonrth fnel that mnst also be transported into the mitochondria for oxidation. [Pg.190]

The conversion of glncose to pymvate (glycolysis) generates NADH from NAD+ in the cytosol so that, to maintain... [Pg.190]

Under aerobic conditions, the hydrogen atoms of NtUDH are oxidised within the mitochondrion pyruvate is also oxidised in the mitochondrion (Figure 9.15). However, NADH cannot be transported across the inner mitochondrial membrane, and neither can the hydrogen atoms themselves. This problem is overcome by means of a substrate shuttle. In principle, this involves a reaction between NADH and an oxidised substrate to produce a reduced product in the cytosol, followed by transport of the reduced product into the mitochondrion, where it is oxidised to produce hydrogen atoms or electrons, for entry into the electron transfer chain. Finally, the oxidised compound is transported back into the cytosol. The principle of the shuttle is shown in Figure 9.16. [Pg.191]

Figure 9.16 The principle of the transfer shuttle of hydrogen atoms into the mitochondrion. A dehydrogenase in the cytosol generates XH from NADH. XH is transported into the mitochondrion where a second dehydrogenase catalyses a reaction in which the XH reduces NAD to NADH. X then returns to the cytosol. The nature of XH is considered in Figures 9.17 and 9.18. Figure 9.16 The principle of the transfer shuttle of hydrogen atoms into the mitochondrion. A dehydrogenase in the cytosol generates XH from NADH. XH is transported into the mitochondrion where a second dehydrogenase catalyses a reaction in which the XH reduces NAD to NADH. X then returns to the cytosol. The nature of XH is considered in Figures 9.17 and 9.18.

See other pages where NADH cytosolic is mentioned: [Pg.716]    [Pg.716]    [Pg.716]    [Pg.716]    [Pg.922]    [Pg.107]    [Pg.132]    [Pg.132]    [Pg.134]    [Pg.134]    [Pg.138]    [Pg.150]    [Pg.150]    [Pg.307]    [Pg.99]    [Pg.86]    [Pg.64]    [Pg.140]    [Pg.538]    [Pg.541]    [Pg.595]    [Pg.21]    [Pg.22]    [Pg.92]    [Pg.93]    [Pg.156]    [Pg.96]    [Pg.225]    [Pg.258]    [Pg.198]    [Pg.201]    [Pg.191]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



Cytosol

Cytosolic

Cytosolic NADH, oxidation

Electrons from Cytosolic NADH Are Imported by Shuttle Systems

NADH

© 2024 chempedia.info