Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane separation selectivity

In summary, one can see that separation selectivity for gas and vapor molecules depends on the category of pores (mesopores, supermicropores, and ultramicropores) and on the related transport mechanisms. Either size effect or preferential adsorption effect (irrespective of molecular dimension) is involved in selective separation of multicomponent mixtures. The membrane separation selectivity for two gases is usually expressed either as the ratio between the two pure gas permeation fluxes (ideal selectivity) or between each gas permeation flux measured from the mixture of the two gases (real selectivity). More detailed information on gas and vapor transport in porous ceramic membranes can be found in Ref. [24]. [Pg.152]

Stability is inseparably connected to carrier effectiveness in membrane separations, as well as performance in other separation systems. With few exceptions (3,4), and specifically for membranes, separation selectivity is governed principally by binding constants. Moreover, transport efficiency in membranes is also dictated largely by complex stability, though the relationship is not as straightforward nor as exclusive as it is with selectivity. [Pg.131]

Membrane separator. A separator that passes gas or vapor to the mass spectrometer through a semipermeable (e.g., silicon) membrane that selectively transmits organic compounds in preference to carrier gas. Membrane separator, membrane enricher, semipermeable membrane separator, and semipermeable membrane enricher are synonymous terms. [Pg.432]

The seminal discovery that transformed membrane separation from a laboratory to an industrial process was the development, in the early 1960s, of the Loeb-Sourirajan process for making defect-free, high flux, asymmetric reverse osmosis membranes (5). These membranes consist of an ultrathin, selective surface film on a microporous support, which provides the mechanical strength. The flux of the first Loeb-Sourirajan reverse osmosis membrane was 10 times higher than that of any membrane then avaUable and made reverse osmosis practical. The work of Loeb and Sourirajan, and the timely infusion of large sums of research doUars from the U.S. Department of Interior, Office of Saline Water (OSW), resulted in the commercialization of reverse osmosis (qv) and was a primary factor in the development of ultrafiltration (qv) and microfiltration. The development of electro dialysis was also aided by OSW funding. [Pg.60]

Module Selection. The choice of the appropriate membrane module for a particular membrane separation balances a number of factors. The principal factors that enter into this decision are Hsted in Table 2. [Pg.74]

Reverse osmosis membrane separations are governed by the properties of the membrane used in the process. These properties depend on the chemical nature of the membrane material, which is almost always a polymer, as well as its physical stmcture. Properties for the ideal RO membrane include low cost, resistance to chemical and microbial attack, mechanical and stmctural stabiHty over long operating periods and wide temperature ranges, and the desired separation characteristics for each particular system. However, few membranes satisfy all these criteria and so compromises must be made to select the best RO membrane available for each appHcation. Excellent discussions of RO membrane materials, preparation methods, and stmctures are available (8,13,16-21). [Pg.144]

Most commercially available RO membranes fall into one of two categories asymmetric membranes containing one polymer, or thin-fHm composite membranes consisting of two or more polymer layers. Asymmetric RO membranes have a thin ( 100 nm) permselective skin layer supported on a more porous sublayer of the same polymer. The dense skin layer determines the fluxes and selectivities of these membranes whereas the porous sublayer serves only as a mechanical support for the skin layer and has Httle effect on the membrane separation properties. Asymmetric membranes are most commonly formed by a phase inversion (polymer precipitation) process (16). In this process, a polymer solution is precipitated into a polymer-rich soHd phase that forms the membrane and a polymer-poor Hquid phase that forms the membrane pores or void spaces. [Pg.144]

Advantages to Membrane Separation This subsertion covers the commercially important membrane applications. AU except electrodialysis are pressure driven. All except pervaporation involve no phase change. All tend to be inherently low-energy consumers in the-oiy if not in practice. They operate by a different mechanism than do other separation methods, so they have a unique profile of strengths and weaknesses. In some cases they provide unusual sharpness of separation, but in most cases they perform a separation at lower cost, provide more valuable products, and do so with fewer undesirable side effects than older separations methods. The membrane interposes a new phase between feed and product. It controls the transfer of mass between feed and product. It is a kinetic, not an equihbrium process. In a separation, a membrane will be selective because it passes some components much more rapidly than others. Many membranes are veiy selective. Membrane separations are often simpler than the alternatives. [Pg.2024]

Process Description lectrodialysls (ED) is a membrane separation process in which ionic species are separated from water, macrosolutes, and all uncharged solutes. Ions are induced to move by an electrical potential, and separation is facilitated by ion-exchange membranes. Membranes are highly selective, passing either anions or cations andveiy little else. The principle of ED is shown in Fig. 22-56. [Pg.2028]

A different approach is the use of an ultrafiltration membrane with an immobilized chiral component [31]. The transport mechanism for the separation of d,l-phenylalanine by an enantioselective ultrafiltration membrane is shown schematically in Fig. 5-4a. Depending on the trans-membrane pressure, selectivities were found to be between 1.25 and 4.1, at permeabilities between 10 and 10 m s respectively (Fig. 5-4b). [Pg.133]

Possible applications of MIP membranes are in the field of sensor systems and separation technology. With respect to MIP membrane-based sensors, selective ligand binding to the membrane or selective permeation through the membrane can be used for the generation of a specific signal. Practical chiral separation by MIP membranes still faces reproducibility problems in the preparation methods, as well as mass transfer limitations inside the membrane. To overcome mass transfer limitations, MIP nanoparticles embedded in liquid membranes could be an alternative approach to develop chiral membrane separation by molecular imprinting [44]. [Pg.136]

Membranes are highly viscous, plastic structures. Plasma membranes form closed compartments around cellular protoplasm to separate one cell from another and thus permit cellular individuality. The plasma membrane has selective permeabilities and acts as a barrier, thereby maintaining differences in composition between the inside and outside of the cell. The selective permeabilities are provided mainly by channels and pumps for ions and substrates. The plasma membrane also exchanges material with the extracellular environment by exocytosis and endocytosis, and there are special areas of membrane strucmre—the gap junctions— through which adjacent cells exchange material. In addition, the plasma membrane plays key roles in cellcell interactions and in transmembrane signaling. [Pg.415]

Several techniques for VOC removal have been investigated such as thermal incineration, catalytic oxidation, condensation, absorption, bio-filtration, adsorption, and membrane separation. VOCs are present in many types of waste gases and are often removed by adsorption [1]. Activated carbon (AC) is commonly used as an adsorbent of gases and vapors because of its developed surface area and large pore volumes [2]. Modification techniques for AC have been used to increase surface adsorption and hence removal capacity, as well as to improve selectivity to organic compounds [3]. [Pg.457]

Hygiene and Regulation Almost unique to MF is the influence of regulatory concerns in selection and implementation of a suitable microfilter. Since MF is heavily involved with industries regulated by the Food and Drug Administration, concerns about process stability consistency of manufacture, virus reduction, pathogen control, and material safety loom far larger than is usually found in other membrane separations. [Pg.57]

Solution Let yPSA represent the selection of pressure swing adsorption, yMs the selection of the membrane separator and yCc the selection of cryogenic condensation. First restrict the choice between pressure swing adsorption and cryogenic condensation. [Pg.49]

Further, facilitated membrane separations by fixed-site heteropolysiloxane membranes for a mixture of seven amino acids provided a good selectivity (S = 9-10, calculated as flux ratio) for lypophilic amino acids (L-phenylalanine and L-leucine) (Figure 10.3) [30,31]. [Pg.317]

The principle of pH electrode sensing mechanisms which are based on glass or polymer membranes is well investigated and understood. Common to all potentiometric ion selective sensors, a pH sensitive membrane is the key component for a sensing mechanism. When the pH sensitive membrane separates the internal standard solution with a constant pH from the test solution, the potential difference E across the membrane is determined by the Nemst equation ... [Pg.289]


See other pages where Membrane separation selectivity is mentioned: [Pg.153]    [Pg.368]    [Pg.153]    [Pg.368]    [Pg.484]    [Pg.493]    [Pg.146]    [Pg.61]    [Pg.76]    [Pg.88]    [Pg.401]    [Pg.31]    [Pg.31]    [Pg.172]    [Pg.262]    [Pg.178]    [Pg.136]    [Pg.68]    [Pg.353]    [Pg.393]    [Pg.142]    [Pg.113]    [Pg.181]    [Pg.216]    [Pg.135]    [Pg.288]    [Pg.12]    [Pg.148]    [Pg.59]    [Pg.90]    [Pg.51]    [Pg.209]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Membrane Gas Separation Selectivity a and the Pressure Ratio

Membrane selection

Membrane selectivity

Membrane separation perm-selectivity

Selectivity of Plasma-Treated Gas-Separating Polymer Membranes

Selectivity separation

Separator selection

© 2024 chempedia.info