Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane reactors hydrogenation reactions

In contrast to the studies on gas- and vapor-phase hydrogenation reactions utilizing dense Pd-based membrane reactors, dehydrogenation reactions have been consistently observed to benefit from the concept of a membrane reactor. In almost all cases the reaction conversion is increased. This is attributed to the well known favorable effect of equilibrium displacement applied to dehydrogenation reactions which are mostly limited by the equilibrium barrier. [Pg.326]

As an example the use of ceramic membranes for ethane dehydrogenation has been discussed (91). The constmction of a commercial reactor, however, is difficult, and a sweep gas is requited to shift the product composition away from equiUbrium values. The achievable conversion also depends on the permeabihty of the membrane. Figure 7 shows the equiUbrium conversion and the conversion that can be obtained from a membrane reactor by selectively removing 80% of the hydrogen produced. Another way to use membranes is only for separation and not for reaction. In this method, a conventional, multiple, fixed-bed catalytic reactor is used for the dehydrogenation. After each bed, the hydrogen is partially separated using membranes to shift the equihbrium. Since separation is independent of reaction, reaction temperature can be optimized for superior performance. Both concepts have been proven in bench-scale units, but are yet to be demonstrated in commercial reactors. [Pg.443]

One of the most studied applications of Catalytic Membrane Reactors (CMRs) is the dehydrogenation of alkanes. For this reaction, in conventional reactors and under classical conditions, the conversion is controlled by thermodynamics and high temperatures are required leading to a rapid catalyst deactivation and expensive operative costs In a CMR, the selective removal of hydrogen from the reaction zone through a permselective membrane will favour the conversion and then allow higher olefin yields when compared to conventional (nonmembrane) reactors [1-3]... [Pg.127]

A special version of the membrane reactor using Pd was made for separating hydrogen and oxygen and their controlled reaction. [Pg.288]

GP 11] ]R 20] Investigations with a Pd membrane reactor relied on reaction of streams separated via a membrane (to prevent complete mixing of reactants, not to enhance conversion) [11]. A hydrogen/nitrogen stream is guided parallel to an oxygen stream, both separated by the membrane and water is thereby formed. The membranes, made by thin-film processes, can sustain a pressure up to 5 bar. [Pg.339]

Because Pd-alloy membranes operate at high temperatures in the range of WGS reaction and on the lower end of methane reforming reaction, they can be used in a membrane reactor configuration for the simultaneous separation of hydrogen. As discussed earlier,... [Pg.303]

Lin, J.Y.S., Zeolite Membrane Reactor for Water-Gas-Shift Reaction for Hydrogen Production, Proceedings of2007 U.S. DOE Hydrogen Annual Merit Review Meeting, Arlington, VA, May 2007. [Pg.320]

Pex, P.P.A.C. and Y.C. van Delft, Silica membranes for hydrogen fuel production by membrane water gas shift reaction and development of a mathematical model for a membrane reactor, in Carbon Dioxide Capture for Storage in Deep Geologic Formations—Results from the C02 Capture Project Capture and Separation of Carbon Dioxide from Combustion Sources, eds., D. Thomas, and B. Sally, Vol. 1, Chapter 17, 2005. [Pg.322]

Using unmodified Ru-BINAP and Rh-Et-DUPHOS catalysts Jacobs et al. performed hydrogenation reactions of dimethylitaconate (DMI) and methyl-2-acetamidoacrylate (MAA), respectively. [11,47] The continuous hydrogenation reaction was performed in a 100 mL stirred autoclave containing an MPF-60 membrane at the bottom, which also acts as a dead-end membrane reactor. The hydrogenation reactions will be discussed in paragraph 4.6.1. [Pg.76]

Liese el al. attached a transfer-hydrogenation catalyst to a soluble polymer and applied this system in a continuously operated membrane reactor.[60] A Gao-Noyori catalyst was bound to a soluble polysiloxane polymer via a hydrosilylation reaction (Figure 4.41). [Pg.100]

There is huge potential in the combination of biocatalysis and electrochemistry through reaction engineering as the linker. An example is a continuous electrochemical enzyme membrane reactor that showed a total turnover number of 260 000 for the enantioselective peroxidase catalyzed oxidation of a thioether into its sulfone by in situ cathodic generated hydrogen peroxide - much higher than achieved by conventional methods [52],... [Pg.292]

Table 73. Membrane Reactor Studies on Hydrogenation, Oxidation and Other Reaction Types... Table 73. Membrane Reactor Studies on Hydrogenation, Oxidation and Other Reaction Types...
For a packed-bed membrane reactor (PBMR) the membrane is permselective and removes the product as it is formed, forcing the reaction to the right. In this case, the membrane is not active and a conventional catalyst is used. Tavolaro et al. [45] demonstrated this concept in their work on CO2 hydrogenation to methanol using a LTA zeolite membrane. The tubular membrane was packed with bimetallic Cu/ZnO where CO2 and H2 react to form EtOH and H2O. These condensable products were removed by LTA membrane which increased the reaction yield when compared to a conventional packed bed reactor operating under the same conditions [45]. [Pg.323]

It turned out that for all the polymeric amphiphiles of the (EO) -(PO)m-(EO) type there was an increase in enantioselectivity compared with the reaction without amphiphile. Moreover, the ratio of the length of the (PO) block compared with the (EO) block seemed to determine enantioselectivity and activity and not the cmc (critical micelle concentration). A (PO) block length of 56 units works best with different length of the (EO)n block in this type of hydrogenation [30]. for the work-up of the experiments, G. Oehme et al. used the extraction method, but initial experiments failed and the catalyst could not be recycled that way. To solve this problem the authors applied a membrane reactor in combination with the amphiphile (EO)37-(PO)5g-(EO)37 (Tab. 6.1, entry 9) [31]. By doing so, the poly-mer/Rh-catalyst was retained and could be reused several times without loss of activity and enantioselectivity by more than 99%. [Pg.282]


See other pages where Membrane reactors hydrogenation reactions is mentioned: [Pg.323]    [Pg.446]    [Pg.461]    [Pg.548]    [Pg.698]    [Pg.77]    [Pg.768]    [Pg.117]    [Pg.484]    [Pg.156]    [Pg.69]    [Pg.69]    [Pg.77]    [Pg.817]    [Pg.817]    [Pg.820]    [Pg.46]    [Pg.299]    [Pg.304]    [Pg.311]    [Pg.313]    [Pg.586]    [Pg.75]    [Pg.95]    [Pg.222]    [Pg.1366]    [Pg.205]    [Pg.310]    [Pg.111]    [Pg.123]    [Pg.134]    [Pg.135]    [Pg.142]    [Pg.206]    [Pg.87]    [Pg.290]   
See also in sourсe #XX -- [ Pg.1577 ]




SEARCH



Carbon-based membrane reactors hydrogen production reactions

Hydrogen membrane hydrogenation

Hydrogen membrane reactor

Hydrogenation membrane reactor

Hydrogenation, reactors

Membrane hydrogen

Membrane reactions

Membrane reactors reactions

Reactors reaction

© 2024 chempedia.info