Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane lipid bilayers composition

Figure 3 A hydrophobic permeant must negotiate through a complex series of diffu-sional and thermodynamic barriers as it penetrates into a cell. The lipid and protein compositions and charge distribution of the inner and outer leaflets of the membrane lipid bilayer can play limiting roles, particularly at the tight junction. Depending upon the permeant s characteristics, it may remain within the plasma membrane or enter the cytoplasm, possibly in association with cytosolic proteins, and partition into cytoplasmic membranes. Figure 3 A hydrophobic permeant must negotiate through a complex series of diffu-sional and thermodynamic barriers as it penetrates into a cell. The lipid and protein compositions and charge distribution of the inner and outer leaflets of the membrane lipid bilayer can play limiting roles, particularly at the tight junction. Depending upon the permeant s characteristics, it may remain within the plasma membrane or enter the cytoplasm, possibly in association with cytosolic proteins, and partition into cytoplasmic membranes.
At a more molecular level, the influences of the composition of the membrane domains, which are characteristic of a polarized cell, on diffusion are not specifically defined. These compositional effects include the differential distribution of molecular charges in the membrane domains and between the leaflets of the membrane lipid bilayer (Fig. 3). The membrane domains often have physical differences in surface area, especially in the surface area that is accessible for participation in transport. For example, the surface area in some cells is increased by the presence of membrane folds such as microvilli (see Figs. 2 and 6). The membrane domains also have differences in metabolic selectivity and capacity as well as in active transport due to the asymmetrical distribution of receptors and transporters. [Pg.244]

Phosphatidylcholine is an important component of cell membranes but cell mem branes are more than simply lipid bilayers Although their composition varies with their source a typical membrane contains about equal amounts of lipid and protein and the amount of cholesterol m the lipid fraction can approximate that of phosphatidylcholine The lipid fraction is responsible for the structure of the membrane Phosphatidyl choline provides the bilayer that is the barrier between what is inside the cell and what IS outside Cholesterol intermingles with the phosphatidylcholine to confer an extra measure of rigidity to the membrane... [Pg.1078]

In reconstitution experiments, the self-assembly of the pore-forming protein a-hemolysin of Staphylococcus aureus (aHL) [181-183] was examined in plain and S-layer-supported lipid bilayers. Staphylococcal aHL formed lytic pores when added to the lipid-exposed side of the DPhPC bilayer with or without an attached S-layer from B coagulans E38/vl. The assembly of aHL pores was slower at S-layer-supported compared to unsupported folded membranes. No assembly could be detected upon adding aHL monomers to the S-layer face of the composite membrane. Therefore, the intrinsic molecular sieving properties of the S-layer lattice did not allow passage of aHL monomers through the S-layer pores to the lipid bilayer [142]. [Pg.377]

The lipid molecule is the main constituent of biological cell membranes. In aqueous solutions amphiphilic lipid molecules form self-assembled structures such as bilayer vesicles, inverse hexagonal and multi-lamellar patterns, and so on. Among these lipid assemblies, construction of the lipid bilayer on a solid substrate has long attracted much attention due to the many possibilities it presents for scientific and practical applications [4]. Use of an artificial lipid bilayer often gives insight into important aspects ofbiological cell membranes [5-7]. The wealth of functionality of this artificial structure is the result of its own chemical and physical properties, for example, two-dimensional fluidity, bio-compatibility, elasticity, and rich chemical composition. [Pg.225]

Majd, S. and Mayer, M. (2005) Hydrogel stamping of arrays of supported lipid bilayers with various lipid compositions for the screening of drug-membrane and protein-membrane interactions. Angew. Chem. Int. Ed., 44, 6697-6700. [Pg.236]

Although the drug delivery to the lipid bilayer membrane is just the first step for bioactivities and phopholipid vesicles are rather simple in view of the composite structure of biomembranes, the unambiguous specification of the preferential location of the drug is essential the successive processes of the action are expected to be induced via the delivery site in membranes. We expect more advances in the dynamic NMR study, so that we can get insight into the mechanism of DD in membranes. [Pg.799]

As seen in Eq. (6), AGjw depends on the packing density, tim, of the lipid membrane which in turn depends on the lipid composition. According to the above results, Km is expected to increase with increasing packing density of the membrane, and this has indeed been demonstrated by functionally reconstituting P-gp in different lipid bilayers [62],... [Pg.466]

Abstract To understand how membrane-active peptides (MAPs) function in vivo, it is essential to obtain structural information about them in their membrane-bound state. Most biophysical approaches rely on the use of bilayers prepared from synthetic phospholipids, i.e. artificial model membranes. A particularly successful structural method is solid-state NMR, which makes use of macroscopically oriented lipid bilayers to study selectively isotope-labelled peptides. Native biomembranes, however, have a far more complex lipid composition and a significant non-lipidic content (protein and carbohydrate). Model membranes, therefore, are not really adequate to address questions concerning for example the selectivity of these membranolytic peptides against prokaryotic vs eukaryotic cells, their varying activities against different bacterial strains, or other related biological issues. [Pg.89]

For the orientation-based structure analysis of MAPs, uniformly oriented lipid bilayers are typically prepared on solid supports as illustrated in Fig. 2 [23, 47, 55]. These mechanically oriented membranes are advantageous for static ssNMR experiments, as they provide a robust way to orient a sample with any desired lipid composition, peptide concentration, and at any desired temperature. The lipids... [Pg.96]

Unlike other Eukarya, animal cells lack cell walls, though they tend to be surrounded by a highly developed glycocalyx of up to 140 nm in thickness [108]. This diffuse layer of densely packed oligosaccharides has a heterogeneous composition and is connected to the membrane via lipids or integral proteins. The boundary of the cell usually extends beyond the mere lipid bilayer with its embedded proteins, and the extracellular structures provide initial sites of interaction or are themselves targets for MAPs such as antimicrobial peptides [115]. [Pg.104]

Myelin in situ has a water content of about 40%. The dry mass of both CNS and PNS myelin is characterized by a high proportion of lipid (70-85%) and, consequently, a low proportion of protein (15-30%). By comparison, most biological membranes have a higher ratio of proteins to lipids. The currently accepted view of membrane structure is that of a lipid bilayer with integral membrane proteins embedded in the bilayer and other extrinsic proteins attached to one surface or the other by weaker linkages. Proteins and lipids are asymmetrically distributed in this bilayer, with only partial asymmetry of the lipids. The proposed molecular architecture of the layered membranes of compact myelin fits such a concept (Fig. 4-11). Models of compact myelin are based on data from electron microscopy, immunostaining, X-ray diffraction, surface probes studies, structural abnormalities in mutant mice, correlations between structure and composition in various species, and predictions of protein structure from sequencing information [4]. [Pg.56]

Our first issue with respect to the lipid bilayer is its composition. This varies from membrane to membrane but generally includes several glycerophospholipids— phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine—as well as... [Pg.258]


See other pages where Membrane lipid bilayers composition is mentioned: [Pg.208]    [Pg.132]    [Pg.219]    [Pg.152]    [Pg.371]    [Pg.159]    [Pg.177]    [Pg.71]    [Pg.344]    [Pg.123]    [Pg.325]    [Pg.183]    [Pg.422]    [Pg.131]    [Pg.44]    [Pg.819]    [Pg.820]    [Pg.275]    [Pg.171]    [Pg.173]    [Pg.256]    [Pg.190]    [Pg.207]    [Pg.324]    [Pg.102]    [Pg.58]    [Pg.576]    [Pg.104]    [Pg.137]    [Pg.14]    [Pg.4]    [Pg.5]    [Pg.7]    [Pg.218]    [Pg.421]    [Pg.353]   


SEARCH



Bilayer, lipidic

Lipid bilayer

Lipid bilayers

Lipid composition

Lipid lipids composition

Membrane bilayer

Membrane bilayer composition

Membrane composite

Membrane lipid bilayers

Membrane lipid bilayers phospholipid composition

Membrane lipid composition

Membranes bilayers

Membranes composition

© 2024 chempedia.info