Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sorption processes mechanisms

Ordinary diffusion involves molecular mixing caused by the random motion of molecules. It is much more pronounced in gases and Hquids than in soHds. The effects of diffusion in fluids are also greatly affected by convection or turbulence. These phenomena are involved in mass-transfer processes, and therefore in separation processes (see Mass transfer Separation systems synthesis). In chemical engineering, the term diffusional unit operations normally refers to the separation processes in which mass is transferred from one phase to another, often across a fluid interface, and in which diffusion is considered to be the rate-controlling mechanism. Thus, the standard unit operations such as distillation (qv), drying (qv), and the sorption processes, as well as the less conventional separation processes, are usually classified under this heading (see Absorption Adsorption Adsorption, gas separation Adsorption, liquid separation). [Pg.75]

Solid phase extraction (SPE) involves the separation of components of samples in solution through their selective interaction with and retention by a solid, particulate sorbent. SPE depends on differences in the affinities of the various components of the sample for the sorbent. The mechanisms of the interactions are virtually identical to the sorption processes that form the basis of liquid chromatographic separations (p. 80). The choice of solvent, the pH and ionic strength of aqueous solutions, and the chemical nature of the sorbent surface, especially its polarity, are all of importance in controlling the selectivity and efficiency of an extraction. [Pg.70]

The fourth type of mechanism is exclusion although perhaps inclusion would be a better description. Strictly, it is not a true sorption process as the separating solutes remain in the mobile phase throughout. Separations occur because of variations in the extent to which the solute molecules can diffuse through an inert but porous stationary phase. This is normally a gel structure which has a small pore size and into which small molecules up to a certain critical size can diffuse. Molecules larger than the critical size are excluded from the gel and move unhindered through the column or layer whilst smaller ones are retarded to an extent dependent on molecular size. [Pg.80]

The difference between this technique and GC or HPLC is that the separation process occurs on a flat essentially two-dimensional surface. The separated components are not usually eluted from the surface but are examined in situ. Alternatively, they can be removed mechanically for further analysis. In thin-layer chromatography (TLC), the stationary phase is usually a polar solid such as silica gel or alumina which is coated onto a sheet of glass, plastic, or aluminium. Although some moisture is retained by the stationary phase, the separation process is predominantly one of surface adsorption. Thin layers are sometimes made from ion-exchange or gelpermeation materials. In these cases the sorption process would be ion-exchange or exclusion. [Pg.154]

Mechanisms of Sorption Processes. Kinetic studies are valuable for hypothesizing mechanisms of reactions in homogeneous solution, but the interpretation of kinetic data for sorption processes is more difficult. Recently it has been shown that the mechanisms of very fast adsorption reactions may be interpreted from the results of chemical relaxation studies (25-27). Yasunaga and Ikeda (Chapter 12) summarize recent studies that have utilized relaxation techniques to examine the adsorption of cations and anions on hydrous oxide and aluminosilicate surfaces. Hayes and Leckie (Chapter 7) present new interpretations for the mechanism of lead ion adsorption by goethite. In both papers it is concluded that the kinetic and equilibrium adsorption data are consistent with the rate relationships derived from an interfacial model in which metal ions are located nearer to the surface than adsorbed counterions. [Pg.6]

Measurements of the chemical composition of an aqueous solution phase are interpreted commonly to provide experimental evidence for either adsorption or surface precipitation mechanisms in sorption processes. The conceptual aspects of these measurements vis-a-vis their usefulness in distinguishing adsorption from precipitation phenomena are reviewed critically. It is concluded that the inherently macroscopic, indirect nature of the data produced by such measurements limit their applicability to determine sorption mechanisms in a fundamental way. Surface spectroscopy (optical or magnetic resonance), although not a fully developed experimental technique for aqueous colloidal systems, appears to offer the best hope for a truly molecular-level probe of the interfacial region that can discriminate among the structures that arise there from diverse chemical conditions. [Pg.217]

The adherence of experimental sorption data to an adsorption isotherm equation provides no evidence as to the actual mechanism of a sorption process. [Pg.220]

Reaction kinetics. The time-development of sorption processes often has been studied in connection with models of adsorption despite the well-known injunction that kinetics data, like thermodynamic data, cannot be used to infer molecular mechanisms (19). Experience with both cationic and anionic adsorptives has shown that sorption reactions typically are rapid initially, operating on time scales of minutes or hours, then diminish in rate gradually, on time scales of days or weeks (16,20-25). This decline in rate usually is not interpreted to be homogeneous The rapid stage of sorption kinetics is described by one rate law (e.g., the Elovich equation), whereas the slow stage is described by another (e.g., an expression of first order in the adsorptive concentration). There is, however, no profound significance to be attached to this observation, since a consensus does not exist as to which rate laws should be used to model either fast or slow sorption processes (16,21,22,24). If a sorption process is initiated from a state of supersaturation with respect to one or more possible solid phases involving an adsorptive, or if the... [Pg.223]

The sorption process generally is studied by plotting the equilibrium concentration of a compound on the adsorbent, as a function of equilibrium concentration in the gas or solution at a given temperature. Adsorption isotherms are graphs obtained by plotting measured adsorption data against the concentration value of the adsorbate. Several mechanisms may be involved in the retention of contaminants on... [Pg.95]

Here again we are concerned with the equilibrium sorption characteristics for all available sorption processes. Also, we need to have sufficient knowledge of the sorption mechanisms and kinetics to relate geologic to laboratory conditions. Likewise we require a comparable understanding of the displacement and release processes which permit migration to proceed. [Pg.338]

In this and the following two chapters, we will focus on solid-aqueous solution and solid-air exchange involving natural sorbents. We will try to visualize the sets of molecular interactions involved in each of the above-mentioned sorption processes. With such pictures in our minds, we will seek to rationalize what makes various sorption mechanisms important under various circumstances. Establishing the critical compound properties and solid characteristics will enable us to understand... [Pg.278]

The effect of temperature on sorption equilibrium is a direct indication of the strength of the sorption process. The weaker the interaction between sorbent and sorbate, the less the effect of temperature (Hamaker and Thompson, 1972). While temperature can influence sorption, the strength and direction of the effect depends on the properties of the sorbent and sorbate and on the sorption mechanism. Adsorption processes are generally exothermic, so the higher the temperature, the less the adsorption (Hamaker and Thompson, 1972). Hydrophobic sorption, however, has been shown to be relatively independent of temperature (Chiou et al., 1979). [Pg.166]

Sorption mechanism of atrazine by SOM has been a subject of controversy. The early works (Weber et al., 1969 Hayes, 1970) showed that the sorption process is inhibited due to the low pKa value of herbicide, along with the proton transfer between carboxylic groups as well as the charger transfer at low pH values. These were discussed as probable retention mechanisms by organic colloids. However, Martin-Neto et al. (1994b, 2001) observed by FTIR (Figure 16.16) and UV-vis spectra that a charge-transfer mechanism was not operative in the HA-atrazine (HA-AT) interaction. FTIR showed that in pH <4, the carboxylate band (1610 cm-1) was observed in HA-AT spectrum, but a decrease in the wavenumber of C-H... [Pg.675]


See other pages where Sorption processes mechanisms is mentioned: [Pg.221]    [Pg.221]    [Pg.286]    [Pg.193]    [Pg.520]    [Pg.428]    [Pg.637]    [Pg.6]    [Pg.217]    [Pg.220]    [Pg.224]    [Pg.180]    [Pg.63]    [Pg.232]    [Pg.442]    [Pg.546]    [Pg.547]    [Pg.549]    [Pg.557]    [Pg.199]    [Pg.39]    [Pg.34]    [Pg.163]    [Pg.227]    [Pg.292]    [Pg.63]    [Pg.286]    [Pg.22]    [Pg.150]    [Pg.198]    [Pg.76]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Mechanical process

Mechanisms process

Processing mechanics

Processive mechanism

Sorption mechanisms

Sorption process

© 2024 chempedia.info