Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation-reduction, radical mechanism

In Part 2 of this book, we shall be directly concerned with organic reactions and their mechanisms. The reactions have been classified into 10 chapters, based primarily on reaction type substitutions, additions to multiple bonds, eliminations, rearrangements, and oxidation-reduction reactions. Five chapters are devoted to substitutions these are classified on the basis of mechanism as well as substrate. Chapters 10 and 13 include nucleophilic substitutions at aliphatic and aromatic substrates, respectively, Chapters 12 and 11 deal with electrophilic substitutions at aliphatic and aromatic substrates, respectively. All free-radical substitutions are discussed in Chapter 14. Additions to multiple bonds are classified not according to mechanism, but according to the type of multiple bond. Additions to carbon-carbon multiple bonds are dealt with in Chapter 15 additions to other multiple bonds in Chapter 16. One chapter is devoted to each of the three remaining reaction types Chapter 17, eliminations Chapter 18, rearrangements Chapter 19, oxidation-reduction reactions. This last chapter covers only those oxidation-reduction reactions that could not be conveniently treated in any of the other categories (except for oxidative eliminations). [Pg.381]

In this chapter, we discuss free-radical substitution reactions. Free-radical additions to unsaturated compounds and rearrangements are discussed in Chapters 15 and 18, respectively. In addition, many of the oxidation-reduction reactions considered in Chapter 19 involve free-radical mechanisms. Several important types of free-radical reactions do not usually lead to reasonable yields of pure products and are not generally treated in this book. Among these are polymerizations and high-temperature pyrolyses. [Pg.896]

This was also accomplished with BaRu(0)2(OH)3. The same type of conversion, with lower yields (20-30%), has been achieved with the Gif system There are several variations. One consists of pyridine-acetic acid, with H2O2 as oxidizing agent and tris(picolinato)iron(III) as catalyst. Other Gif systems use O2 as oxidizing agent and zinc as a reductant. The selectivity of the Gif systems toward alkyl carbons is CH2 > CH > CH3, which is unusual, and shows that a simple free-radical mechanism (see p. 899) is not involved. ° Another reagent that can oxidize the CH2 of an alkane is methyl(trifluoromethyl)dioxirane, but this produces CH—OH more often than C=0 (see 14-4). ... [Pg.1533]

A crystal structure of the C02 derivative of (8), K[Co(salen)( 71-C02)], haso been reported in which the Co—C bond is 1.99 A, the C—O bonds are both equivalent at 1.22 A and the O-C-O angle is 132°.125 Carboxylation of benzylic and allylic chlorides with C02 in THF-HMPA was achieved with (8) electrogenerated by controlled-potential electrolysis,126 in addition to reductive coupling of methyl pyruvate, diethyl ketomalonate and / -tolylcarbodiimide via C—C bond formation. Methyl pyruvate is transformed into diastereomeric tartrates concomitant with oxidation to the divalent Co(salen) and a free-radical mechanism is proposed involving the homolytic cleavage of the Co—C bond. However, reaction with diphenylketene (DPK) suggests an alternative pathway for the reductive coupling of C02-like compounds. [Pg.11]

Nitrosoarenes are readily formed by the oxidation of primary N-hydroxy arylamines and several mechanisms appear to be involved. These include 1) the metal-catalyzed oxidation/reduction to nitrosoarenes, azoxyarenes and arylamines (144) 2) the 02-dependent, metal-catalyzed oxidation to nitrosoarenes (145) 3) the 02-dependent, hemoglobin-mediated co-oxidation to nitrosoarenes and methe-moglobin (146) and 4) the 0 2-dependent conversion of N-hydroxy arylamines to nitrosoarenes, nitrosophenols and nitroarenes (147,148). Each of these processes can involve intermediate nitroxide radicals, superoxide anion radicals, hydrogen peroxide and hydroxyl radicals, all of which have been observed in model systems (149,151). Although these radicals are electrophilic and have been suggested to result in DNA damage (151,152), a causal relationship has not yet been established. Nitrosoarenes, on the other hand, are readily formed in in vitro metabolic incubations (2,153) and have been shown to react covalently with lipids (154), proteins (28,155) and GSH (17,156-159). Nitrosoarenes are also readily reduced to N-hydroxy arylamines by ascorbic acid (17,160) and by reduced pyridine nucleotides (9,161). [Pg.360]

The familiar standard de carbonyl at ion mechanism ( 3, 5) involving a concerted oxidative-addition of aldehyde, CO migration (with subsequent elimination), and reductive-elimination of product, would seem with metalloporphyrins to require coordination numbers higher than six, and in this case Ru(IV) intermediates. Although this is plausible, the data overall strongly suggest a radical mechanism and Ru(III) intermediates. [Pg.248]

The first two pathways (a) and (b) show, respectively, the influence of H+ and of surface complex forming ligands on the non-reductive dissolution. These pathways were discussed in Chapter 5. Reductive dissolution mechanisms are illustrated in pathways (c) - (e) (Fig. 9.3). Reductants adsorbed to the hydrous oxide surface can readily exchange electrons with an Fe(III) surface center. Those reductants, such as ascorbate, that form inner-sphere surface complexes are especially efficient. The electron transfer leads to an oxidized reactant (often a radical) and a surface Fe(II) atom. The Fe(II)-0 bond in the surface of the crystalline lattice is more labile than the Fe(III)-0 bond and thus, the reduced metal center is more easily detached from the surface than the original oxidized metal center (see Eqs. 9.4a - 9.4c). [Pg.316]

The amide functionality plays an important role in the physical and chemical properties of proteins and peptides, especially in their ability to be involved in the photoinduced electron transfer process. Polyamides and proteins are known to take part in the biological electron transport mechanism for oxidation-reduction and photosynthesis processes. Therefore studies of the photochemistry of proteins or peptides are very important. Irradiation (at 254 nm) of the simplest dipeptide, glycylglycine, in aqueous solution affords carbon dioxide, ammonia and acetamide in relatively high yields and quantum yield (0.44)202 (equation 147). The reaction mechanism is thought to involve an electron transfer process. The isolation of intermediates such as IV-hydroxymethylacetamide and 7V-glycylglycyl-methyl acetamide confirmed the electron-transfer initiated free radical processes203 (equation 148). [Pg.739]

Various transition metals have been used in redox processes. For example, tandem sequences of cyclization have been initiated from malonate enolates by electron-transfer-induced oxidation with ferricenium ion Cp2pe+ (51) followed by cyclization and either radical or cationic termination (Scheme 41). ° Titanium, in the form of Cp2TiPh, has been used to initiate reductive radical cyclizations to give y- and 5-cyano esters in a 5- or 6-exo manner, respectively (Scheme 42). The Ti(III) reagent coordinates both to the C=0 and CN groups and cyclization proceeds irreversibly without formation of iminyl radical intermediates.The oxidation of benzylic and allylic alcohols in a two-phase system in the presence of r-butyl hydroperoxide, a copper catalyst, and a phase-transfer catalyst has been examined. The reactions were shown to proceed via a heterolytic mechanism however, the oxidations of related active methylene compounds (without the alcohol functionality) were determined to be free-radical processes. [Pg.143]

The mechanism of the reaction depicted in Scheme 4.6 differs from the Sf.,1 or Sf.,2 mechanism in that it involves the stage of one-electron oxidation-reduction. The impetus of this stage may be the easy detachment of the bromine anion followed by the formation of fluorenyl radical. The latter is unsaturated at position 9 near three benzene rings that stabilize the radical center. The radical formed is intercepted by the phenylthiolate ion. This leads to the anion-radical of the substitution product. Further electron exchange produces the substrate anion-radical and final product in its neutral state. The reaction consists of radical (R)-nucleophilic (N) monomolecular (1) substitution (S), with the combined symbol Sj j l. Reactions of Sj j l type can have both branch-chain and nonchain characters. [Pg.210]

A related reaction has been observed with alkenyl substituted 1,2-dihydroquinolines. Heating these compounds results in oxidation of the heterocycle with corresponding reduction of the double bond. A radical mechanism was also postulated to be operating in this reaction (equation 14) (75JOC2288). [Pg.369]

Both reacting intermediates, TPrA and Ru(bipy)33 + species, are produced simultaneously during electrochemical oxidation Actual ECL mechanism, however, is somewhat more complicated than expressed by the above reaction pattern with ECL emission from Ru(bipy)32+/TPrA system depending on the applied electrode potential. Usually, the direct oxidation of TPrA at the electrode occurs at more negative potentials than characteristic for the Ru(bipy)32+/Ru(bipy)33 + redox couple. Generally, the ECL emission from Ru(bipy)32+/TPrA system as a function of applied potential consists of two emission waves (both associated with the emission from 3 Ru(bipy)32 + ) attributed to TPrA and Ru(bipy)32 + oxidation, respectively.154 First emission wave corresponds to annihilation of sufficiently stable TPrA + (with half-life of 0.2 ms) and Ru(bipy)3 + species with Ru(bipy)3 + intermediate formed from the reduction of Ru(bipy)32+ by TPrA free radical ... [Pg.496]

However, these experiments may not have established a mechanism for natural flavoprotein catalysis because the properties of 5-deazaflavins resemble those of NAD+ more than of flavins.239 Their oxidation-reduction potentials are low, they do not form stable free radicals, and their reduced forms don t react readily with 02. Nevertheless, for an acyl-CoA dehydrogenase the rate of reaction of the deazaflavin is almost as fast as that of natural FAD.238 For these enzymes a hydride ion transfer from the (3 CH (reaction type D of Table 15-1) is made easy by removal of the a-H of the acyl-CoA to form an enolate anion intermediate. [Pg.789]

Elimination of P from 5-enolpyruvylshikimate 3-P (Eq. 25-3 and Fig. 25-1, step g) produces chorismate.30 The 24-kDa chorismate synthase, which catalyzes this reaction, requires for activity a reduced flavin. Although there is no obvious need for an oxidation reduction coenzyme, there is strong evidence that the flavin may play an essential role in catalysis, perhaps via a radical mechanism.31-331 ... [Pg.1424]

Reduction of the ester group to give secondary alcohol 54 and sub sequent protection with /e/t-butyldimethylsilyl chloride leads to si-lyl ether 55 Oxidative cleavage of the cyclopropyl ring in this system proceeds through a radical mechanism and results in ben/oate ester 56. Basic ester hydrolysis gives piimar> alcohol 16... [Pg.192]

As will become evident in this section, in the net transformation from reactant —s-product transformations many of the synthetically useful reactions involving >C=C<"+ are analogous to those involving neutral, un-ionized carbon-carbon double bonds (e.g. the Diels-Alder reaction, oxidation/reduction reactions, nucleophilic addition etc.). However, many of the reactions involving a neutral >C=C< often require the presence of an activating substituent in order to make the alkene more electron-deficient. In a sense, one-electron oxidation of an alkene to its radical cation provides a simple and unique mechanism for increasing the electrophilic (and, of course, radical) properties of... [Pg.1318]

The product of acetyl-CoA carboxylase reaction, malonyl-CoA, is reduced via malonate semialdehyde to 3-hydroxypropionate, which is further reductively converted to propionyl-CoA. Propionyl-CoA is carboxylated to (S)-methylmalonyl-CoA by the same carboxylase. (S)-Methylmalonyl-CoA is isomerized to (R)-methylmal-onyl-CoA, followed by carbon rearrangement to succinyl-CoA by coenzyme B 12-dependent methylmalonyl-CoA mutase. Succinyl-CoA is further reduced to succinate semialdehyde and then to 4-hydroxybutyrate. The latter compound is converted into two acetyl-CoA molecules via 4-hydroxybutyryl-CoA dehydratase, a key enzyme of the pathway. 4-Hydroxybutyryl-CoA dehydratase is a [4Fe-4S] cluster and FAD-containing enzyme that catalyzes the elimination of water from 4-hydroxybutyryl-CoA by a ketyl radical mechanism to yield crotonyl-CoA [34]. Conversion of the latter into two molecules of acetyl-CoA proceeds via normal P-oxidation steps. Hence, the 3-hydroxypropionate/4-hydroxybutyrate cycle (as illustrated in Figure 3.5) can be divided into two parts. In the first part, acetyl-CoA and two bicarbonate molecules are transformed to succinyl-CoA, while in the second part succinyl-CoA is converted to two acetyl-CoA molecules. [Pg.42]


See other pages where Oxidation-reduction, radical mechanism is mentioned: [Pg.764]    [Pg.836]    [Pg.133]    [Pg.1062]    [Pg.195]    [Pg.1062]    [Pg.201]    [Pg.140]    [Pg.816]    [Pg.209]    [Pg.234]    [Pg.134]    [Pg.584]    [Pg.260]    [Pg.732]    [Pg.455]    [Pg.647]    [Pg.233]    [Pg.223]    [Pg.191]    [Pg.1190]    [Pg.106]    [Pg.484]    [Pg.202]    [Pg.218]    [Pg.374]    [Pg.1331]    [Pg.58]   
See also in sourсe #XX -- [ Pg.106 ]




SEARCH



Mechanisms oxidation-reduction

Oxidation radical

Oxide Radicals

Radical mechanism

Radicals oxidation-reduction

Reduction radical mechanisms

Reduction, mechanism

Reductive mechanism

© 2024 chempedia.info