Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Measurement photodiode

Figure Bl.19.23. Principle of simultaneous measurement of nomial and lateral (torsional) forces. The intensity difference of the upper and lower segments of the photodiode is proportional to the z-bending of the cantilever. The intensity difference between the right and left segments is proportional to the torsion, t, of the force sensor. (Taken from [110], figure 2.)... Figure Bl.19.23. Principle of simultaneous measurement of nomial and lateral (torsional) forces. The intensity difference of the upper and lower segments of the photodiode is proportional to the z-bending of the cantilever. The intensity difference between the right and left segments is proportional to the torsion, t, of the force sensor. (Taken from [110], figure 2.)...
The gates referred to above can be created in various ways. For example, suppose that the probe beam goes tlirough the sample, but only half of its physical width (in the sample) is crossed with the pump beam. Now, if we have two photodiodes, one can measure the intensify of the perturbed part of the probe beam, whilst the second measures the unperturbed part as a result of creating spatial gates, the two recorded output signals can be used to measure the... [Pg.3028]

Measured at the wavelength of maximum detectivity and the frequency given with a bandwidth of 1 Hz. Commonly called photodiodes. [Pg.194]

Under Httle or no illumination,/ must be minimized for optimum performance. The factor B is 1.0 for pure diffusion current and approaches 2.0 as depletion and surface-mode currents become important. Generally, high crystal quality for long minority carrier lifetime and low surface-state density reduce the dark current density which is the sum of the diffusion, depletion, tunneling, and surface currents. The ZM product is typically measured at zero bias and is expressed as RM. The ideal photodiode noise current can be expressed as follows ... [Pg.426]

Sihcon charge coupled devices (CCDs), commonly used in soHd-state video cameras and in research appHcations, are being appHed to low light level spectroscopy appHcations. The main advantage of area array CCDs over linear photodiode detectors is the two-dimensional format, which provides simultaneous measurements of spatial and spectral data. [Pg.398]

For SFM, maintaining a constant separation between the tip and the sample means that the deflection of the cantilever must be measured accurately. The first SFM used an STM tip to tunnel to the back of the cantilever to measure its vertical deflection. However, this technique was sensitive to contaminants on the cantilever." Optical methods proved more reliable. The most common method for monitoring the defection is with an optical-lever or beam-bounce detection system. In this scheme, light from a laser diode is reflected from the back of the cantilever into a position-sensitive photodiode. A given cantilever deflection will then correspond to a specific position of the laser beam on the position-sensitive photodiode. Because the position-sensitive photodiode is very sensitive (about 0.1 A), the vertical resolution of SFM is sub-A. [Pg.90]

An optical detector with appropriate electronics and readout. Photomultiplier tubes supply good sensitivity for wavelengths in the visible range, and Ge, Si, or other photodiodes can be used in the near infrared range. Multichannel detectors like CCD or photodiode arrays can reduce measurement times, and a streak camera or nonlinear optical techniques can be used to record ps or sub-ps transients. [Pg.383]

A Q-switched, frequency-quadrupled Nd—YAG laser (X, = 266 nm) and its accompanying optical components produce and focus the laser pulse onto the sample surface. The typical laser spot size in this instrument is approximately 2 pm. A He-Ne pilot laser, coaxial with the UV laser, enables the desired area to be located. A calibrated photodiode for the measurement of laser energy levels is also present... [Pg.588]

Photodiodes produce an electric field as a result of pn transitions. On illumination a photocurrent flows that is strictly proportional to the radiation intensity. Photodiodes are sensitive and free from inertia. They are, thus, suitable for rapid measurement [1, 59] they have, therefore, been employed for the construction of diode array detectors. [Pg.30]

Parker [55] studied the IN properties of MEH-PPV sandwiched between various low-and high work-function materials. He proposed a model for such photodiodes, where the charge carriers are transported in a rigid band model. Electrons and holes can tunnel into or leave the polymer when the applied field tilts the polymer bands so that the tunnel barriers can be overcome. It must be noted that a rigid band model is only appropriate for very low intrinsic carrier concentrations in MEH-PPV. Capacitance-voltage measurements for these devices indicated an upper limit for the dark carrier concentration of 1014 cm"3. Further measurements of the built in fields of MEH-PPV sandwiched between metal electrodes are in agreement with the results found by Parker. Electro absorption measurements [56, 57] showed that various metals did not introduce interface states in the single-particle gap of the polymer that pins the Schottky contact. Of course this does not imply that the metal and the polymer do not interact [58, 59] but these interactions do not pin the Schottky barrier. [Pg.278]

Friend et at. studied the influence of electrodes with different work-functions on the performance of PPV photodiodes 143). For ITO/PPV/Mg devices the fully saturated open circuit voltage was 1.2 V and 1.7 V for an ITO/PPV/Ca device. These values for the V c are almost equal to the difference in the work-function of Mg and Ca with respect to 1TO. The open circuit voltage of the ITO/PPV/A1 device observed at 1.2 V, however, is considerably higher than the difference of the work-function between ITO and Al. The Cambridge group references its PPV with a very low dark carrier concentration and consequently the formation of Schottky barriers at the PPV/Al interface is not expected. The mobility of the holes was measured at KT4 cm2 V-1 s l [62] and that for the electrons is expected to be clearly lower. [Pg.590]

Watmough, N.J.. Turnbull, D.M., Sherratt. H.S.A. Bartlett. K. (1989). Measurement of the acyl-CoA intermediates of p-oxidation by hplc with on-line radiochemical and photodiode-array detection. Application to the study of [U- C]hexadecanoate by intact rat liver mitochondria. Biochem. J. 262,261-269. [Pg.154]

Photodiodes are the modem analogues to photocells. They increase their electrical resistance under light impact which, as part of an electric circuit, can be measured easily. Many current instruments display diode arrays instead of a single diode. Tens of photodiodes are arranged in a tight area. They are exposed to the sample bound spectrum where they respond to the color that corresponds to their positions in the diode array. A rapid, periodically performed electrical interrogation of all diodes (sequence periodicity in the order of milliseconds) reveals a quasi-stationary stable spectrogram. More sophisticated than photodiodes are phototransistors. They amplify internally the photoelectric effect, but the sensitivity of a photomultiplier cannot be achieved. [Pg.16]


See other pages where Measurement photodiode is mentioned: [Pg.98]    [Pg.89]    [Pg.98]    [Pg.89]    [Pg.681]    [Pg.1062]    [Pg.2949]    [Pg.2956]    [Pg.379]    [Pg.391]    [Pg.274]    [Pg.193]    [Pg.512]    [Pg.14]    [Pg.422]    [Pg.431]    [Pg.379]    [Pg.379]    [Pg.316]    [Pg.246]    [Pg.761]    [Pg.1827]    [Pg.66]    [Pg.712]    [Pg.729]    [Pg.267]    [Pg.268]    [Pg.280]    [Pg.111]    [Pg.133]    [Pg.313]    [Pg.428]    [Pg.590]    [Pg.590]    [Pg.20]    [Pg.28]    [Pg.650]    [Pg.253]    [Pg.164]   
See also in sourсe #XX -- [ Pg.570 ]




SEARCH



Photodiode

Photodiodes

© 2024 chempedia.info