Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Matter intensive

The second complication is that the equation, as traditionally interpreted, only handles point particles, but produces eigenfunction solutions of more complex geometrical structure. By analogy with electromagnetic theory the square of the amplitude function could be interpreted as matter intensity, but this is at variance with the point-particle assumption. The standard way out is to assume that ip2 represents a probability density rather than intensity. Historical records show that this interpretation of particle density was introduced to serve as a compromise between the rival matrix and differential operator theories of quantum observables, although eigenvalue equations, formulated in either matrix or differential formalism are known to be mathematically equivalent. [Pg.56]

Properties are the characteristics by which we can identify samples of matter. Intensive properties, such as color and brittleness, do not depend on the size of the sample, but extensive properties, such as volume, do. Intensive properties are more important in identifying substances. We can determine whether a combination of substances is a mixmre or a compound by its properties. When we combine samples of matter, the result has more matter present than any of the original samples. When we break down a sample, each of the resulting products is composed of less matter than the starting sample. (Section 1.2)... [Pg.31]

Extensive and intensive properties Physical properties can be further described as being one of two types. Extensive properties are dependent upon the amount of substance present. For example, mass, which depends on the amount of substance there is, is an extensive property. Length and volume are also extensive properties. Density, on the other hand, is an example of an intensive property of matter. Intensive properties are independent of the amount of substance present. For example, density of a substance (at constant temperature and pressure) is the same no matter how much substance is present. [Pg.56]

Experience has shown that for a confined flame, sufficient primary air jet momentum is required to create mixing via external recirculation zones. As the acid-alkali model shows, high momentum and, for that matter, intense and perhaps complete mixing, is tantamount to efficient combustion. We discussed in Chapter 4 that, for confined jets, the onset of flame recirculation can be described by the Craya-Curtet... [Pg.155]

The physics of X-ray refraction are analogous to the well known refraction of light by optical lenses and prisms, governed by Snell s law. The special feature is the deflection at very small angles of few minutes of arc, as the refractive index of X-rays in matter is nearly one. Due to the density differences at inner surfaces most of the incident X-rays are deflected [1]. As the scattered intensity of refraction is proportional to the specific surface of a sample, a reference standard gives a quantitative measure for analytical determinations. [Pg.558]

A general prerequisite for the existence of a stable interface between two phases is that the free energy of formation of the interface be positive were it negative or zero, fluctuations would lead to complete dispersion of one phase in another. As implied, thermodynamics constitutes an important discipline within the general subject. It is one in which surface area joins the usual extensive quantities of mass and volume and in which surface tension and surface composition join the usual intensive quantities of pressure, temperature, and bulk composition. The thermodynamic functions of free energy, enthalpy and entropy can be defined for an interface as well as for a bulk portion of matter. Chapters II and ni are based on a rich history of thermodynamic studies of the liquid interface. The phase behavior of liquid films enters in Chapter IV, and the electrical potential and charge are added as thermodynamic variables in Chapter V. [Pg.1]

Nomially the amplitude of the total incident field (or intensity of the incident light) is such that the light/matter coupling energies are sufficiently weak not to compete seriously with the dark matter Hamiltonian. As already noted, when this is tire case, tlie induced polarization, P is treated perturbatively in orders of the total electric field. Thus one writes... [Pg.1181]

We have seen that the intensities of diffraction are proportional to the Fourier transfomi of the Patterson fimction, a self-convolution of the scattering matter and that, for a crystal, the Patterson fimction is periodic in tln-ee dimensions. Because the intensity is a positive, real number, the Patterson fimction is not dependent on phase and it can be computed directly from the data. The squared stmcture amplitude is... [Pg.1373]

As noted earlier, most electron diffraction studies are perfonned in a mode of operation of a transmission electron microscope. The electrons are emitted themiionically from a hot cathode and accelerated by the electric field of a conventional electron gun. Because of the very strong interactions between electrons and matter, significant diffracted intensities can also be observed from the molecules of a gas. Again, the source of electrons is a conventional electron gun. [Pg.1379]

Increases in the appHed static pressure increase the acoustic intensity necessary for cavitation, but if equal number of cavitation events occur, the coUapse should be more intense. In contrast, as the ambient pressure is reduced, eventuaUy the gas-fiUed crevices of particulate matter which serve as nucleation sites for the formation of cavitation in even "pure" Hquids, wiU be deactivated, and therefore the observed sonochemistry wiU be diminished. [Pg.262]

Vibratory Shear-Enhanced Membranes The vibratory shearenhancing process (VSEP) is j ist starting commerciahzation by Logic International, Emeryville, CA. It employs the nse of intense sinnsiodal shear waves to ensnre that the membrane snrfaces remain ac tive and clean of sohd matter. The application of this technology wonld be in the pnrification of wastewater (Ref. 2). [Pg.2195]

A third type of regional problem is that of visibility. Visibility may be reduced by specific plumes or by the regional levels of particulate matter that produce various intensities of haze. The fine sulfate and nitrate particulates just discussed are largely responsible for reduction of visibility (see Chapter 10). This problem is of concern in locations of natural beauty, where it is desirable to keep scenic vistas as free of obstructions to the view as possible. [Pg.37]

The vibrational motions of the chemically bound constituents of matter have fre-quencies in the infrared regime. The oscillations induced by certain vibrational modes provide a means for matter to couple with an impinging beam of infrared electromagnetic radiation and to exchange energy with it when the frequencies are in resonance. In the infrared experiment, the intensity of a beam of infrared radiation is measured before (Iq) and after (7) it interacts with the sample as a function of light frequency, w[. A plot of I/Iq versus frequency is the infrared spectrum. The identities, surrounding environments, and concentrations of the chemical bonds that are present can be determined. [Pg.32]


See other pages where Matter intensive is mentioned: [Pg.26]    [Pg.253]    [Pg.26]    [Pg.253]    [Pg.394]    [Pg.118]    [Pg.222]    [Pg.1179]    [Pg.1179]    [Pg.1204]    [Pg.1263]    [Pg.1263]    [Pg.1364]    [Pg.2864]    [Pg.102]    [Pg.169]    [Pg.551]    [Pg.704]    [Pg.774]    [Pg.150]    [Pg.2]    [Pg.48]    [Pg.49]    [Pg.454]    [Pg.460]    [Pg.302]    [Pg.300]    [Pg.222]    [Pg.526]    [Pg.2012]    [Pg.74]    [Pg.80]    [Pg.202]    [Pg.587]    [Pg.86]    [Pg.9]    [Pg.31]    [Pg.329]    [Pg.354]   
See also in sourсe #XX -- [ Pg.11 ]

See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Matter intensive property

© 2024 chempedia.info