Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Balance matter

Albrecht, W.A. (1953) Organic matter balances soil fertility. Natural Food and Farming, February 1953. [Pg.206]

A comparison of element inputs from the atmosphere and element outputs by leaching of the subsoil (matter balances) provides evidence about the storage of elements in the ecosystem. The S- and N-balances provide information about the acidification rate, which is caused by air pollution (Liu et al. 1993). To diminish the impacts of acid inputs, selected forest sites should be limed with calcium carbonate or dolomite at a level of 3 t ha , with a replication after 3 to 5 years. [Pg.66]

At equilibrium, since the total amount of diffusing substance in the sheet and liquid is the same as that initially in the liquid, the matter balance written for this substance gives ... [Pg.22]

In the previous chapter, we considered the problem of selection of the path for the reactive diffusion when the choice is made among a finite number of phase formation modes. Let us now treat the problems allowing for an infinite set of solutions, all of which are compatible with the matter balance equations. These are mainly the problems of morphology choice when different modes are possible, and the task is to find the optimal one to be realized in practice. In the first two sections of the chapter, we consider the issue of low-temperature phase diffusion transformations, namely discontinuous precipitation and DIGM. At that, the evolution equations based on matter conservation laws allow an infinite number of solutions corresponding to different thicknesses of the phase formed and different velocities of phase transformation front movement. [Pg.381]

The reaction of nucleation has the same total matter balance as that of the reaction of transformation ... [Pg.289]

The differential equations from the matter balances of the species are... [Pg.298]

Now examine the conditions of pseudo-steady state modes. The mechanism is not linear, so we cannot apply the theorem of equality of rates aity more. Therefore, it is necessary to cancel the matter balance of each intermediate compound ... [Pg.877]

In order to explain the experimental data, i.e. obtain an accurate description of the change in surface charge as a function of the acidity of the medium (surface reactions using mass-action laws and matter balances, with the surface potential being linked to the surface charge using an electrostatic model. The models differ in... [Pg.295]

It might be thought that since chemisorption equilibrium was discussed in Section XVIII-3 and chemisorption rates in Section XVIII-4B, the matter of desorption rates is determined by the principle of microscopic reversibility (or, detailed balancing) and, indeed, this principle is used (see Ref. 127 for... [Pg.707]

In addition to their practical importance, colloidal suspensions have received much attention from chemists and physicists alike. This is an interesting research area in its own right, and it is an important aspect of what is referred to as soft condensed matter physics. This contribution is written from such a perspective, and although a balanced account is aimed for, it is inevitably biased by the author s research interests. References to the original literature are included, but within the scope of this contribution only a fraction of the vast amount of literature on colloidal suspensions can be mentioned. [Pg.2667]

The reactivities of tlie species witliin tlie Wilkinson cycle are so great tliat tliey are not observed directly during tlie catalytic reaction ratlier, tliey are present in a delicate dynamic balance during tlie catalysis in concentrations too low to observe easily, and only tlie more stable species outside tlie cycle (outside tlie dashed line in figure C2.7.2 are tlie ones observed. Obviously it was no simple matter to elucidate tliis cycle tlie research required piecing it togetlier from observations of kinetics and equilibria under conditions chosen so tliat sometimes tlie cycle proceeded slowly or not at all. [Pg.2703]

The reaction center has either to be spedfied when inputting a reaction into a database, or it has to be determined automatically. Specification on input is time-consuming but it can benefit from the insight of the human expert, particularly so if the reaction input is done by the primary investigator as is the case in an electronic notebook. Automatic determination of reaction centers is difficult, particularly so when incomplete readion equations are given where the stoichiometry of a reaction is not balanced see Section 3.1). One approach is to try first to complete the stoichiometry of a reaction equation by filling in the missing molecules such as water, N2, etc. and then to start with reaction center determination. A few systems for automatic reaction center specification are available. However, little has been published on this matter and therefore it is not discussed in any detail here. [Pg.175]

Besides equilibrium constant equations, two other types of equations are used in the systematic approach to solving equilibrium problems. The first of these is a mass balance equation, which is simply a statement of the conservation of matter. In a solution of a monoprotic weak acid, for example, the combined concentrations of the conjugate weak acid, HA, and the conjugate weak base, A , must equal the weak acid s initial concentration, Cha- ... [Pg.159]

If the T and P of a multiphase system are constant, then the quantities capable of change are the iadividual mole numbers of the various chemical species / ia the various phases p. In the absence of chemical reactions, which is assumed here, the may change only by iaterphase mass transfer, and not (because the system is closed) by the transfer of matter across the boundaries of the system. Hence, for phase equUibrium ia a TT-phase system, equation 212 is subject to a set of material balance constraints ... [Pg.498]

Temperature. The temperature for combustion processes must be balanced between the minimum temperature required to combust the original contaminants and any intermediate by-products completely and the maximum temperature at which the ash becomes molten. Typical operating temperatures for thermal processes are incineration (750—1650°C), catalytic incineration (315—550°C), pyrolysis (475—815°C), and wet air oxidation (150—260°C at 10,350 kPa) (15). Pyrolysis is thermal decomposition in the absence of oxygen or with less than the stoichiometric amount of oxygen required. Because exhaust gases from pyrolytic operations are somewhat "dirty" with particulate matter and organics, pyrolysis is not often used for hazardous wastes. [Pg.168]

A TWC catalyst must be able to partition enough CO present in the exhaust for each of these reactions and provide a surface that has preference for NO adsorption. Rhodium has a slight preference for NO adsorption rather than O2 adsorption Pt prefers O2. Rh also does not cataly2e the unwanted NH reaction as does Pt, and Rh is more sinter-resistant than Pt (6). However, the concentrations of O2 and NO have to be balanced for the preferred maximum reduction of NO and oxidation of CO. This occurs at approximately the stoichiometric point with just enough oxidants (O2 and NO ) and reductants (CO, HC, and H2). If the mixture is too rich there is not enough O2 and no matter how active the catalyst, some CO and HC is not converted. If the mixture is too lean, there is too much O2 and the NO caimot effectively compete for the catalyst sites (53—58). [Pg.488]

The inerts will blanket a portion of the tubes. The blanketed portion has very poor heat transfer. The column pressure is controlled by varying the percentage of the tube surface blanketed. When the desired pressure is exceeded, the vacuum system will suck out more inerts, and lower the percentage of surface blanketed. This will increase cooling and bring the pressure back down to the desired level. The reverse happens if the pressure falls below that desired. This is simply a matter of adjusting the heat transfer coefficient to heat balance the system. [Pg.42]

It would appear obvious for startup, and in some cases full-time operation. that a suction strainer or filter is mandatory. The reason for ilic strainer is to keep Junk and pipe scale out of the compressor. Fines from pipe scale and rust will make short work of the internal bore of a cylinder and are not all that good for the balance of the components. In some severe ca.ses, cylinders have been badly damaged in a matter of a few weeks. The strainer should be removable in service for cleaning, particularly when it is intended for permanent installation. Under all circumstances, provision must be made to monitor the condition of the strainer. Much frustration has been expended because a compressor overheated or lost capacity and no one knew if the strainer had fouled or blinded. [Pg.66]

Cellulose is the most abundant of naturally occurring organic compounds for, as the chief constituent of the eell walls of higher plants, it comprises at least one-third of the vegetable matter of the world. The cellulose eontent of such vegetable matter varies from plant to plant. For example, oven-dried cotton contains about 90% cellulose, while an average wood has about 50%. The balance is composed of lignin, polysaccharides other than cellulose and minor amounts of resins, proteins and mineral matter. In spite of its wide distribution in nature, cellulose for chemical purposes is derived commerically from only two sources, cotton linters and wood pulp. [Pg.613]


See other pages where Balance matter is mentioned: [Pg.414]    [Pg.186]    [Pg.452]    [Pg.152]    [Pg.78]    [Pg.921]    [Pg.921]    [Pg.131]    [Pg.337]    [Pg.579]    [Pg.119]    [Pg.414]    [Pg.186]    [Pg.452]    [Pg.152]    [Pg.78]    [Pg.921]    [Pg.921]    [Pg.131]    [Pg.337]    [Pg.579]    [Pg.119]    [Pg.1096]    [Pg.1098]    [Pg.233]    [Pg.774]    [Pg.109]    [Pg.415]    [Pg.94]    [Pg.101]    [Pg.12]    [Pg.248]    [Pg.379]    [Pg.246]    [Pg.521]    [Pg.347]    [Pg.248]    [Pg.39]    [Pg.372]    [Pg.122]   
See also in sourсe #XX -- [ Pg.62 ]




SEARCH



© 2024 chempedia.info