Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass Transfer with Simultaneous Chemical Reactions

What makes the fabrication of composite materials so complex is that it involves simultaneous heat, mass, and momentum transfer, along with chemical reactions in a multiphase system with time-dependent material properties and boundary conditions. Composite manufacturing requires knowledge of chemistry, polymer and material science, rheology, kinetics, transport phenomena, mechanics, and control systems. Therefore, at first, composite manufacturing was somewhat of a mystery because very diverse knowledge was required of its practitioners. We now better understand the different fundamental aspects of composite processing so that this book could be written with contributions from many composite practitioners. [Pg.19]

The fabrication of composite laminates having a thermosetting resin matrix is a complex process. It involves simultaneous heal, mass, and momentum transfer along with chemical reaction in a multiphase system with time-dependent material properties and boundary conditions. Two critical problems, which arise during production of thick structural laminates, are the occurrence of severely detrimental voids and gradients in resin concentration. In order to efficiently manufacture quality parts, on-line control and process optimization are necessary, which in turn require a realistic model of the entire process. In this article we review current progress toward developing accurate void and resin flow portions of this overall process model. [Pg.101]

CFD has become a standard tool for analyzing flow patterns in various situations related to chemical engineering. In many cases related to multiphase reactors, mass transfer limits overall chemical reaction. In these cases the accurate calculation of local mass transfer rates is of utmost importance. This is best done with the population balance approach, where local properties are used to model bubble or droplet breakage and coalescence phenomena. It has been proven that these rigorous models along with other multiphase and chemistry related models can be implemented in the CFD code, and solved simultaneously with the fluid flows. [Pg.548]

MODELLING OF SIMULTANEOUS MASS AND HEAT TRANSFER WITH CHEMICAL REACTION USING THE MAXWELL-STEFAN THEORY—I. MODEL DEVELOPMENT AND ISOTHERMAL STUDY... [Pg.1]

The variation of efficiencies is due to interaction phenomena caused by the simultaneous diffusional transport of several components. From a fundamental point of view one should therefore take these interaction phenomena explicitly into account in the description of the elementary processes (i.e. mass and heat transfer with chemical reaction). In literature this approach has been used within the non-equilibrium stage model (Sivasubramanian and Boston, 1990). Sawistowski (1983) and Sawistowski and Pilavakis (1979) have developed a model describing reactive distillation in a packed column. Their model incorporates a simple representation of the prevailing mass and heat transfer processes supplemented with a rate equation for chemical reaction, allowing chemical enhancement of mass transfer. They assumed elementary reaction kinetics, equal binary diffusion coefficients and equal molar latent heat of evaporation for each component. [Pg.2]

In this paper a transfer model will be presented, which can predict mass and energy transport through a gas/vapour-liquid interface where a chemical reaction occurs simultaneously in the liquid phase. In this model the Maxwell-Stefan theory has been used to describe the transport of mass and heat. On the basis of this model a numerical study will be made to investigate the consequences of using the Maxwell-Stefan equation for describing mass transfer in case of physical absorption and in case of absorption with chemical reaction. Despite the fact that the Maxwell-Stefan theory has received significant attention, the incorporation of chemical reactions with associated... [Pg.2]

The absorption of ozone from the gas occurred simultaneously with the reaction of the PAH inside the oil droplets. In order to prove that the mass transfer rates of ozone were not limiting in this case, the mass transfer gas/water was optimized and the influence of the mass transfer water/oil was studied by ozonating various oil/water-emulsions with defined oil droplet size distributions. No influence of the mean droplet diameter (1.2 15 pm) on the reaction rate of PAH was observed, consequently the chemical reaction was not controlled by mass transfer at the water/oil interface or diffusion inside the oil droplets. Therefore, a microkinetic description was possible by a first order reaction with regard to the PAH concentration (Kornmuller et al., 1997 a). The effects of pH variation and addition of scavengers indicated a selective direct reaction mechanism of PAH inside the oil droplets... [Pg.157]

Frank, M. J. W., Kuipers, J. A. M., Krishna, R., and van Swaaij, W. P. M., Modelling of simultaneous mass and heat transfer with chemical reactions using the Maxwell-Stefan theory— U. Non-isothermal study. Chem. Eng. Sci. 50(10), 1661 (1995b). [Pg.322]

The intensification of the heat transfer through stirring is seldom the primary stirring task. It mostly occurs in connection with the intensification of mass transfer by stirring (dispersion of gases or hquids with a simultaneous exothermic chemical reaction, dissolution of solids with liberation of the latent heat of solution etc.). Occasionally the stirring heat has to be removed, so that the process can proceed under isothermal conditions. [Pg.272]

Stangle, G.C. and Aksay, LA. (1990) Simultaneous momentum, heat and mass transfer with chemical reaction in a disordered porous medium Application to binder removal from a ceramic green body, Chem. Eng. Sci. 45, 1719. [Pg.425]

Chemical processes which incorporate diffusion usually involve chemical reactions. Often diffusion and reaction occur in the same region, and the two rate phenomena are coupled so closely that they have to be treated simultaneously. "Mass transfer with chemical reaction" is, indeed, an example of a topic which does not fall entirely within the province of either a chemist or the conventional engineer, because it requires simultaneous consideration of molecular diffusion, fluid mechanics and chemical reaction kinetics, thus becoming a typical and classical chemical engineering topic. [Pg.3]

Distillation with chemical reaction is a process of great complexity. Not only does it impose simultaneous consideration of the rate equations of mass transfer and chemical change but also amplifies their interaction through the presence of heat of reaction. Further, it poses questions regarding equilibrium data and questions the validity of such concepts as plate efficiency. [Pg.397]

Derive equations describing simultaneous mass transfer with chemical reaction and identify the boundary conditions in fluid-fluid and fluid-solid systems. [Pg.177]

The technique involving simultaneous absorption with chemical reaction and physical desorption was employed to determine mass transfer coefficients with and without chemical reaction under identical hydrodynamic conditions. The gas phase consisted of CO2 and N2, and the liquid phase consisted of 0.2M NaOH solution containing dissolved oxygen. 3mm and 4mm glass beads were used as the solid phase. [Pg.399]

Danckwerts et al. (D6, R4, R5) recently used the absorption of COz in carbonate-bicarbonate buffer solutions containing arsenate as a catalyst in the study of absorption in packed column. The C02 undergoes a pseudo first-order reaction and the reaction rate constant is well defined. Consequently this reaction could prove to be a useful method for determining mass-transfer rates and evaluating the reliability of analytical approaches proposed for the prediction of mass transfer with simultaneous chemical reaction in gas-liquid dispersions. [Pg.302]

A slightly different approach was taken by Gill (G15), who considered the case of a bubble moving through a stationary liquid with mass transfer accompanied by simultaneous first-order chemical reaction. His assumptions were as follows ... [Pg.344]

Comparison of Eq. (184) with Eq. (183) shows the effect of size distribution for the case of fast chemical reaction with simultaneous diffusion. This serves to emphasize the error that may arise when one applies uniform-drop-size assumptions to drop populations. Quantitatively the error is small, because 1 — is small in comparison with the second term in the brackets [i.e., kL (kD)112). Consequently, Eq. (184) and Eq. (183) actually give about the same result. In general, the total average mass-transfer rate in the disperser has been evaluated in this model as a function of the following parameters ... [Pg.369]

We have considered thermodynamic equilibrium in homogeneous systems. When two or more phases exist, it is necessary that the requirements for reaction equilibria (i.e., Equations (7.46)) be satisfied simultaneously with the requirements for phase equilibria (i.e., that the component fugacities be equal in each phase). We leave the treatment of chemical equilibria in multiphase systems to the specialized literature, but note that the method of false transients normally works quite well for multiphase systems. The simulation includes reaction—typically confined to one phase—and mass transfer between the phases. The governing equations are given in Chapter 11. [Pg.250]

The Effectiveness Factor Analysis in Terms of Effective Diffusivities First-Order Reactions on Spherical Pellets. Useful expressions for catalyst effectiveness factors may also be developed in terms of the concept of effective diffusivities. This approach permits one to write an expression for the mass transfer within the pellet in terms of a form of Fick s first law based on the superficial cross-sectional area of a porous medium. We thereby circumvent the necessity of developing a detailed mathematical model of the pore geometry and size distribution. This subsection is devoted to an analysis of simultaneous mass transfer and chemical reaction in porous catalyst pellets in terms of the effective diffusivity. In order to use the analysis with confidence, the effective diffusivity should be determined experimentally, since it is difficult to obtain accurate estimates of this parameter on an a priori basis. [Pg.447]

The fact that diffusion models describe a number of chemical processes in solid particles is not surprising since in most cases, mass transfer and chemical kinetics phenomena occur simultaneously and it is difficult to separate them [133-135]. Therefore, the overall kinetics of many chemical reactions in soils may often be better described by mass transfer and diffusion-based models than with simple models such as first-order kinetics. This is particularly true for slower chemical reactions in soils where a fast reaction is followed by a much slower reaction (biphasic kinetics), and is often observed in soils for many reactions involving organic and inorganic compounds. [Pg.196]

Many industrial processes involve mass transfer processes between a gas/vapour and a liquid. Usually, these transfer processes are described on the basis of Pick s law, but the Maxwell-Stefan theory finds increasing application. Especially for reactive distillation it can be anticipated that the Maxwell-Stefan theory should be used for describing the mass transfer processes. Moreover, with reactive distillation there is a need to take heat transfer and chemical reaction into account. The model developed in this study will be formulated on a generalized basis and as a consequence it can be used for many other gas-liquid and vapour-liquid transfer processes. However, reactive distillation has recently received considerable attention in literature. With reactive distillation reaction and separation are carried out simultaneously in one apparatus, usually a distillation column. This kind of processing can be advantageous for equilibrium reactions. By removing one of the products from the reactive zone by evaporation, the equilibrium is shifted to the product side and consequently higher conversions can be obtained. Commercial applications of reactive distillation are the production of methyl-... [Pg.1]

The mechanisms considered above are all composed of steps in which chemical transformation occurs. In many important industrial reactions, chemical rate processes and physical rate processes occur simultaneously. The most important physical rate processes are concerned with heat and mass transfer. The effects of these processes are discussed in detail elsewhere within this book. However, the occurrence of a diffusion process in a reaction mechanism will be mentioned briefly because it can lead to kinetic complexities, particularly when a two-phase system is involved. Consider a reaction scheme in which a reactant A migrates through a non-reacting fluid to reach the interface between two phases. At the interface, where the concentration of A is Caj, species A is consumed in a first-order chemical rate process. In effect, consecutive rate processes are occurring. If a steady state is achieved, then... [Pg.129]

One temporal concept to be borne in mind in this context is whether the (bio)chemical reactions and mass transfer separations taking place at the active microzone (one or both of which, by definition, take place simultaneously with detection) are simultaneous or sequential relative to each other. Whether such processes take place at the same or a different time has a marked effect on the sensor performance and type of transient signal obtained. [Pg.74]

Mass Transfer with Simultaneous Chemical Reactions... [Pg.88]


See other pages where Mass Transfer with Simultaneous Chemical Reactions is mentioned: [Pg.61]    [Pg.397]    [Pg.238]    [Pg.918]    [Pg.8]    [Pg.51]    [Pg.444]    [Pg.401]    [Pg.505]    [Pg.270]    [Pg.296]    [Pg.65]    [Pg.341]    [Pg.2]    [Pg.229]    [Pg.28]    [Pg.270]    [Pg.183]    [Pg.539]    [Pg.153]    [Pg.505]    [Pg.24]   
See also in sourсe #XX -- [ Pg.102 , Pg.103 ]




SEARCH



Chemical mass transfer

Mass transfer reaction

Mass transfer with chemical reaction

Mass transfer with reaction

Reaction simultaneously

Reaction with chemical

Transfer with Reaction

© 2024 chempedia.info