Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass transfer in absorption

Mass Transfer in Absorption without Reaction. We measured k in the stirred cell with an 0 - H2O system (figure 2). Forced convection k in the reaction mixtures was calculated from this result according to ]... [Pg.329]

Direct Chlorination of Ethylene. Direct chlorination of ethylene is generally conducted in Hquid EDC in a bubble column reactor. Ethylene and chlorine dissolve in the Hquid phase and combine in a homogeneous catalytic reaction to form EDC. Under typical process conditions, the reaction rate is controlled by mass transfer, with absorption of ethylene as the limiting factor (77). Ferric chloride is a highly selective and efficient catalyst for this reaction, and is widely used commercially (78). Ferric chloride and sodium chloride [7647-14-5] mixtures have also been utilized for the catalyst (79), as have tetrachloroferrate compounds, eg, ammonium tetrachloroferrate [24411-12-9] NH FeCl (80). The reaction most likely proceeds through an electrophilic addition mechanism, in which the catalyst first polarizes chlorine, as shown in equation 5. The polarized chlorine molecule then acts as an electrophilic reagent to attack the double bond of ethylene, thereby faciHtating chlorine addition (eq. 6) ... [Pg.417]

Wetted-waU or falhng-film columns have found application in mass-transfer problems when high-heat-transfer-rate requirements are concomitant with the absorption process. Large areas of open surface are available for heat transfer for a given rate of mass transfer in this type of equipment because of the low mass-transfer rate inherent in wetted-waU equipment. In addition, this type of equipment lends itself to annular-type coohng devices. [Pg.1402]

The principal applications of mass transfer are in the fields of distillation, gas absorption and the other separation processes involving mass transfer which are discussed in Volume 2, In particular, mass transfer coefficients and heights of transfer units in distillation, and in gas absorption are discussed in Volume 2,. In this section an account is given of some of the experimental studies of mass transfer in equipment of simple geometry, in order to provide a historical perspective. [Pg.646]

Usually, mass transfer in gas-liquid models is based on a film model (see Fig. 5.4-13). The rate of transfer of A from the gas bubble to the liquid, i.e. absorption of A in the liquid phase, equals ... [Pg.284]

Mass transfer in packed columns is a continuous, differential, process, so the transfer unit method should be used to determine the column height, as used in absorption see Section 11.14.2. However, it often convenient to treat them as staged processes and use the HETS for the packing employed. For random packings the HETS will, typically, range from 0.5 to 1.5 m, depending on the type and size of packing used. [Pg.623]

There have been many recent studies of the mechanism of mass transfer in a gas absorption system. Many of these have been directed towards investigating whether there is a significant resistance to mass transfer at the interface itself. In order to obtain results which can readily be interpreted, it is essential to operate with a system of simple geometry. For that reason a laminar jet has been used by a number of workers. [Pg.660]

Although, as described by Bjerle et alS13 liquid jet-type absorbers are also used, one relatively recent application of mass transfer in agitated tanks with chemical reaction is the absorption of pollutants from flue gases and, in particular, the scrubbing of sulphur dioxide by a slurry containing fine limestone particles. In this case, the concentration of sulphur dioxide is usually very low and the mechanism of the absorption is complicated due to the presence of solids in the liquid phase where the rate of solid dissolution may significantly affect the absorption rate. [Pg.711]

In this paper a transfer model will be presented, which can predict mass and energy transport through a gas/vapour-liquid interface where a chemical reaction occurs simultaneously in the liquid phase. In this model the Maxwell-Stefan theory has been used to describe the transport of mass and heat. On the basis of this model a numerical study will be made to investigate the consequences of using the Maxwell-Stefan equation for describing mass transfer in case of physical absorption and in case of absorption with chemical reaction. Despite the fact that the Maxwell-Stefan theory has received significant attention, the incorporation of chemical reactions with associated... [Pg.2]

Mass transfer during formation of drops or bubbles at an orifice can be a very significant fraction of the total mass transfer in industrial extraction or absorption operations. Transfer tends to be particularly favorable because of the exposure of fresh surface and because of vigorous internal circulation during the formation period. In discussing mass transfer in extraction, it has become conventional (H12) to distinguish four steps (1) formation, (2) release, (3) free rise or fall, (4) coalescence. Free rise or fall has been treated in previous chapters. Steps 1 and 2 are considered here. [Pg.335]

N. Turbulent Mass Transfer in a Stirred Vessel Rate of Absorption through the Free Surface of the Liquid... [Pg.83]

The influence of pressure on the mass transfer in a countercurrent packed column has been scarcely investigated to date. The only systematic experimental work has been made by the Research Group of the INSA Lyon (F) with Professor M. Otterbein el al. These authors [8, 9] studied the influence of the total pressure (up to 15 bar) on the gas-liquid interfacial area, a, and on the volumetric mass-transfer coefficient in the liquid phase, kia, in a countercurrent packed column. The method of gas-liquid absorption with chemical reaction was applied with different chemical systems. The results showed the increase of the interfacial area with increasing pressure, at constant gas-and liquid velocities. The same trend was observed for the variation of the volumetric liquid mass-transfer coefficient. The effect of pressure on kia was probably due to the influence of pressure on the interfacial area, a. In fact, by observing the ratio, kia/a, it can be seen that the liquid-side mass-transfer coefficient, kL, is independent of pressure. [Pg.257]

Figure 14-12 shows that the fast reaction takes place entirely in the liquid film. In such instances, the dominant mass-transfer mechanism is physical absorption, and physical design methods are applicable but the resistance to mass transfer in the liquid phase is lower due to the reaction. On the other extreme, a slow reaction occurs in the bulk of the liquid, and its rate has little dependence on the resistance to dif-... [Pg.20]

In another study of gas-side mass transfer-limited absorption involving S02 absorption into a sodium hydroxide solution using a wire screen packing, the overall mass transfer coefficient was found to be lower than reported data for packed towers (16). Replacing the wire screen packing with two parallel rotating plates significantly enhanced the mass transfer performance. [Pg.63]

This chapter describes the fundamental principles of heat and mass transfer in gas-solid flows. For most gas-solid flow situations, the temperature inside the solid particle can be approximated to be uniform. The theoretical basis and relevant restrictions of this approximation are briefly presented. The conductive heat transfer due to an elastic collision is introduced. A simple convective heat transfer model, based on the pseudocontinuum assumption for the gas-solid mixture, as well as the limitations of the model applications are discussed. The chapter also describes heat transfer due to radiation of the particulate phase. Specifically, thermal radiation from a single particle, radiation from a particle cloud with multiple scattering effects, and the basic governing equation for general multiparticle radiations are discussed. The discussion of gas phase radiation is, however, excluded because of its complexity, as it is affected by the type of gas components, concentrations, and gas temperatures. Interested readers may refer to Ozisik (1973) for the absorption (or emission) of radiation by gases. The last part of this chapter presents the fundamental principles of mass transfer in gas-solid flows. [Pg.130]

Von Getler et al. [23] were the first to consider these processes during spray absorption drying when they examined the material system of SO2 and Ca(OH)2. In the opinion of these authors, the absorption of sulfur dioxide is limited either by the dissolution of solid or by the gas-phase mass transfer in the first drying period of the drop. The product of this reaction causes substantial diffusion resistance for the absorbed sulfur dioxide and thus obstructs further reactions as the calcium hydroxide remains in the core. [Pg.457]

Experimental investigations and theoretical computations of SO2 absorption in a spray drier [47] showed that, with an excess of calcium hydroxide absorption is limited only by the gas-phase mass transfer. In addition, the flow in a spray drier could be described by the model of an ideal stirred vessel. Newton et al. [70] considered the subprocesses of mass transfer of SO2 from the gaseous phase to the drop surface, the absorption, the dissociation of SO2, the diffusion of the produced species and the dissolution of calcium hydroxide particles in the drop. [Pg.457]

In surface aeration, the absorption rate is also measured with 02 electrodes in the liquid volume. By this method, the liquid-side overall mass transfer coefficient, kLa, is determined (a - volume-related mass transfer area = surface of all gas bubbles in the liquid volume). Due to the fact that the mass transfer in surface aeration occurs almost solely in the liquid surface, A, and by no means in the liquid volume, V, the measured kLa has to be multiplied by V to obtain the target quantity kLA = kLa V. [Pg.88]

Besides fluid mechanics, thermal processes also include mass transfer processes (e.g. absorption or desorption of a gas in a liquid, extraction between two liquid phases, dissolution of solids in liquids) and/or heat transfer processes (energy uptake, cooling, heating, drying). In the case of thermal separation processes, such as distillation, rectification, extraction, and so on, mass transfer between the respective phases is subject to thermodynamic laws (phase equilibria) which are obviously not scale dependent. Therefore, one should not be surprised if there are no scale-up rules for the pure rectification process, unless the hydrodynamics of the mass transfer in plate and packed columns are under consideration. If a separation operation (e.g. drying of hygroscopic materials, electrophoresis, etc.) involves simultaneous mass and heat transfer, both of which are scale-dependent, the scale-up is particularly difficult because these two processes obey different laws. [Pg.149]

The mass transfer process (absorption, desorption sorption ) in gas/liquid contacting is described according to the Two-Film Theory with the general mass transfer equation ... [Pg.156]

D.N. Miller, Mass Transfer in Nitric Acid Absorption, Journal of the American Institute of Chemical Engineers, 33(8), 1987, 1351-1358. [Pg.532]

Strictly speaking, Eqs. (13-69) and (13-70) are valid only for describing mass transfer in binary systems under conditions where the rates of mass transfer are low. Most industrial distillation and absorption processes, however, involve more than two different chemical species. The most fundamentally sound way to model mass transfer in multi-component systems is to use the Maxwell-Stefan (MS) approach (Taylor and Krishna, op. cit.). [Pg.52]

BINARY-FLUID HEAT AND MASS TRANSFER IN MICROCHANNEL GEOMETRIES FOR MINIATURIZED THERMALLY ACTIVATED ABSORPTION HEAT PUMPS... [Pg.339]


See other pages where Mass transfer in absorption is mentioned: [Pg.2003]    [Pg.142]    [Pg.626]    [Pg.2003]    [Pg.142]    [Pg.626]    [Pg.604]    [Pg.113]    [Pg.298]    [Pg.398]    [Pg.9]    [Pg.268]    [Pg.156]    [Pg.192]    [Pg.90]    [Pg.453]    [Pg.387]    [Pg.417]    [Pg.163]    [Pg.62]    [Pg.387]    [Pg.165]    [Pg.430]    [Pg.224]    [Pg.2900]   
See also in sourсe #XX -- [ Pg.316 , Pg.323 ]




SEARCH



Absorption mass transfer

© 2024 chempedia.info