Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass-transfer coefficients chemical methods

An analysis of chemical desorption has recently been published (Chem.Eng.Sci., 21 0980)), which is based on a number of simplifying assumptions the film theory model is assumed, the diffusivities of all species are taken to be equal to each other, and in the solution of the differential equations an approximation which is second order with respect to distance from the gas-liquid interface is used this approximation was introduced as early as 1948 by Van Krevelen and Hoftizer. However, the assumptions listed above are not at all drastic, and two crucial elements are kept in the analysis reversibility of the chemical reactions and arbitrary chemical mechanisms and stoichiometry.The result is a methodology for developing, for any given chemical mechanism, a highly nonlinear, implicit, but algebraic equation for the calculation of the rate enhancement factor as a function of temperature, bulk-liquid composition, interface gas partial pressure and physical mass transfer coefficient The method of solution is easily gene ralized to the case of unequal diffusivities and corrections for differences between the film theory and the penetration theory models can be calculated. [Pg.40]

Traditional Design Method The traditionally employed conventional procedure for designing packed-tower gas-absorption systems involving chemical reactions makes use of overall volumetric mass-transfer coefficients as defined by the equation... [Pg.1364]

According to this method, it is not necessaiy to investigate the kinetics of the chemical reactions in detail, nor is it necessary to determine the solubihties or the diffusivities of the various reactants in their unreacted forms. To use the method for scaling up, it is necessaiy independently to obtain data on the values of the interfacial area per unit volume a and the physical mass-transfer coefficient /c for the commercial packed tower. Once these data have been measured and tabulated, they can be used directly for scahng up the experimental laboratory data for any new chemic ly reac ting system. [Pg.1366]

There are a number of different types of experimental laboratory units that could be used to develop design data for chemically reacting systems. Charpentier [ACS Symp. Sen, 72, 223-261 (1978)] has summarized the state of the art with respect to methods of scaUng up lab-oratoiy data and tabulated typical values of the mass-transfer coefficients, interfacial areas, and contact times to be found in various commercial gas absorbers as well as in currently available laboratoiy units. [Pg.1366]

Dl = diffusivity of transferring solute in liquid, m /sec If the diffusivity, Dl, needed for use in the above equations is not known, it can be estimated from data or methods given in the Perry s Chemical Engineers, Handbook (Section 14 in 4th Edition or Section 3 in 5th Edition). Note that the calculation of the mass transfer coefficients for a given regime involves only physical properties and is independent of agitation conditions. [Pg.474]

Ideal reactors can be classified in various ways, but for our purposes the most convenient method uses the mathematical description of the reactor, as listed in Table 14.1. Each of the reactor types in Table 14.1 can be expressed in terms of integral equations, differential equations, or difference equations. Not all real reactors can fit neatly into the classification in Table 14.1, however. The accuracy and precision of the mathematical description rest not only on the character of the mixing and the heat and mass transfer coefficients in the reactor, but also on the validity and analysis of the experimental data used to model the chemical reactions involved. [Pg.481]

The chemical method used to estimate the interfacial area is based on the theory of the enhancement factor for gas absorption accompanied with a chemical reaction. It is clear from Equations 6.22-6.24 that, in the range where y > 5, the gas absorption rate per unit area of gas-liquid interface becomes independent of the liquid phase mass transfer coefficient /cp, and is given by Equation 6.24. Such criteria can be met in the case of absorption with... [Pg.107]

Which experimental method should be used depends on the type of reactor and how it will be operated, and if clean or process water is to be used for the measurement. Nonsteady state methods are generally simpler and faster to perform if kLa is to be determined in clean water without reaction. For processes that are operated at steady state with a reaction, determination of kLa using steady state methods are preferred, since continuous-flow processes need not be interrupted and operating conditions similar to the normal process conditions can be used. This is especially important for systems with reactions because the reaction rate is usually dependent on the concentration of the reactants present. They are thus often applied for investigations of the mass transfer coefficient under real process conditions with chemical reactions kLa(02) or biological activity kLa(02), e. g. in waste water treatment systems. [Pg.96]

The influence of pressure on the mass transfer in a countercurrent packed column has been scarcely investigated to date. The only systematic experimental work has been made by the Research Group of the INSA Lyon (F) with Professor M. Otterbein el al. These authors [8, 9] studied the influence of the total pressure (up to 15 bar) on the gas-liquid interfacial area, a, and on the volumetric mass-transfer coefficient in the liquid phase, kia, in a countercurrent packed column. The method of gas-liquid absorption with chemical reaction was applied with different chemical systems. The results showed the increase of the interfacial area with increasing pressure, at constant gas-and liquid velocities. The same trend was observed for the variation of the volumetric liquid mass-transfer coefficient. The effect of pressure on kia was probably due to the influence of pressure on the interfacial area, a. In fact, by observing the ratio, kia/a, it can be seen that the liquid-side mass-transfer coefficient, kL, is independent of pressure. [Pg.257]

In many practical applications, gas-liquid mass transfer plays a significant role in the overall chemical reaction rate. It is, therefore, necessary to know the values of effective interfacial area (aL) and the volumetric or intrinsic gas-liquid mass transfer coefficients such as kLah, kL, ktaL, kg, etc. As shown in Section IX, the effective interfacial area is measured by either physical e.g., photography, light reflection, or light scattering) or chemical methods. The liquid-side or gas-side mass-transfer coefficients are also measured by either physical (e.g., absorption or desorption of gas under unsteady-state conditions) or chemical methods. A summary of some of the experimental details and the correlations for aL and kLaL reported in the literature are given by Joshi et al. (1982). In most practical situations, kgaL does not play an important role. [Pg.17]

Gas-liquid mass transfer in the absence of solids has been widely studied (Shah et al, 1982). In these studies, both physical and chemical methods for the determination of the volumetric mass-transfer coefficient and the gas-liquid... [Pg.53]

Joshi and Sharma (1976) also evaluated interfacial area and liquid-side mass-transfer coefficients using chemical methods in columns of 0.38, 0.57, and 1.0 m diameters. The optimum liquid submergence ratio (H/dT) and impeller spacing ratio (L,/dT) were found to be in the range of 0.6-0.7 and 1.4-1.6, respectively. The following correlations were proposed ... [Pg.136]

The volumetric mass transfer coefficient is also determined for three-phase (gas-liquid-solid) systems using both physical and chemical methods described above. A summary of these studies is given in Table XXXII. [Pg.180]

The measured ratio Cy w/Cy,p is dependent not only the weatherability of component j but also on gains and losses of other components in the regolith, as well as external factors such as compaction or dilation of the soil or regohth. The most common method for overcoming such effects is to compare the ratio of the mobile component j to the ratio of an additional component i, which is chemically inert during weathering. Such a comparison is commonly defined in terms of the mass transfer coefficient Tj such that (Brimhall and Dietrich, 1987)... [Pg.2392]

In this section we consider the rate of absorption of gases into liquids that are agitated so that dissolved gas is transported from the interfacial surface to the interior by convective motion. The next section, based on this one, treats chemical methods for determining interfacial areas and mass-transfer coefficients in agitated gas-liquid reactors. [Pg.2]

Chemical methods for determining gas-liquid interfacial areas and mass-transfer coefficients have been intensively developed for the last 10 years. The principles of these methods are deduced from the results presented in Section III,B,2 A gas A is absorbed into a liquid where it undergoes a reaction with a dissolved reactant B ... [Pg.40]

Our objective here is to try to answer the following questions For a proposed type of gas-liquid contactor compatible with the properties and flow rates of the phases and with the reaction type, what are the likely values of the specific interfacial area and the gas and liquid mass-transfer coefficients by which the contact performance can be predicted And what is the expected accuracy of these values Table XVIII gives typical values of these parameters in typical contactors shown in Fig. 12 for fluids with properties not very different from those of air and water (especially, liquid viscosity under 5 cP where the liquid is nonfoaming). Because this review is especially concerned with the chemical method of determining these parameters, experimental data obtained by this method will be given in subsequent tables and figures. [Pg.67]

The result obtained from the film theory is that the mass transfer coefficient is directly proportional to the diffusion coefficient. However, the experimental mass transfer data available in the literature [6], for gas-liquid interfaces, indicate that the mass transfer coefficient should rather be proportional with the square root of the diffusion coefficient. Therefore, in many situations the film theory doesn t give a sufficient picture of the mass transfer processes at the interfaces. Furthermore, the mass transfer coefficient dependencies upon variables like fluid viscosity and velocity are not well understood. These dependencies are thus often lumped into the correlations for the film thickness, 1. The film theory is inaccurate for most physical systems, but it is still a simple and useful method that is widely used calculating the interfacial mass transfer fluxes. It is also very useful for analysis of mass transfer with chemical reaction, as the physical mechanisms involved are very complex and the more sophisticated theories do not provide significantly better estimates of the fluxes. Even for the description of many multicomponent systems, the simplicity of the model can be an important advantage. [Pg.614]

Some complex compact heat exchanger surfaces have been studied using mass transfer methods, for example, naphthalene sublimation [109] and chemical reaction between a surface coating and ammonia added to the air stream [110]. These elegant but tedious methods yield local mass transfer coefficients that can be used to infer heat transfer coefficients by the usual analogy. This detailed information, in turn, should aid in the development of more efficient surfaces. Numerical studies have also yielded useful predictions for laminar flows [111, 112]. [Pg.802]


See other pages where Mass-transfer coefficients chemical methods is mentioned: [Pg.299]    [Pg.448]    [Pg.509]    [Pg.474]    [Pg.71]    [Pg.24]    [Pg.170]    [Pg.945]    [Pg.905]    [Pg.189]    [Pg.2297]    [Pg.35]    [Pg.106]    [Pg.1577]    [Pg.1693]    [Pg.7]    [Pg.11]   
See also in sourсe #XX -- [ Pg.39 , Pg.40 , Pg.41 , Pg.42 , Pg.43 , Pg.44 , Pg.45 , Pg.46 , Pg.47 , Pg.48 ]




SEARCH



Chemical mass transfer

Coefficient Method

Mass coefficient

Mass transfer coefficient

Method transfer

© 2024 chempedia.info