Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometry spectra

Fig. 8 Liquid chromatography-mass spectrometry spectrum of RP444 and [99mTc(HYNIC-tide)(tricine) (ISONIC-HE)], where ISONIC-HE is N-(2-hydroxylethyl)isonicotinylamide... Fig. 8 Liquid chromatography-mass spectrometry spectrum of RP444 and [99mTc(HYNIC-tide)(tricine) (ISONIC-HE)], where ISONIC-HE is N-(2-hydroxylethyl)isonicotinylamide...
Figure 6. The mass spectrometry/mass spectrometry spectrum of an oligomer of a p-hydroxyalkanoate containing five Cg units and one C5 unit The fragmentation illustrated in the mass spectrum shows that the position of the C5 group is random. Figure 6. The mass spectrometry/mass spectrometry spectrum of an oligomer of a p-hydroxyalkanoate containing five Cg units and one C5 unit The fragmentation illustrated in the mass spectrum shows that the position of the C5 group is random.
In contrast to IR and NMR spectroscopy, the principle of mass spectrometry (MS) is based on decomposition and reactions of organic molecules on theii way from the ion source to the detector. Consequently, structure-MS correlation is basically a matter of relating reactions to the signals in a mass spectrum. The chemical structure information contained in mass spectra is difficult to extract because of the complicated relationships between MS data and chemical structures. The aim of spectra evaluation can be either the identification of a compound or the interpretation of spectral data in order to elucidate the chemical structure [78-80],... [Pg.534]

The mass spectrum of benzene is relatively simple and illustrates some of the mfor matron that mass spectrometry provides The most intense peak m the mass spectrum is called the base peak and is assigned a relative intensity of 100 Ion abundances are pro portional to peak intensities and are reported as intensities relative to the base peak The base peak m the mass spectrum of benzene corresponds to the molecular ion (M" ) at miz = 78... [Pg.569]

As we have just seen interpreting the fragmentation patterns m a mass spectrum m terms of a molecule s structural units makes mass spectrometry much more than just a tool for determining molecular weights Nevertheless even the molecular weight can provide more information than you might think... [Pg.573]

Mass Spectrometry Ethers like alcohols lose an alkyl radical from their molecular ion to give an oxygen stabilized cation Thus m/z 73 and m/z 87 are both more abun dant than the molecular ion m the mass spectrum of sec butyl ethyl ether... [Pg.691]

Mass Spectrometry Aldehydes and ketones typically give a prominent molecular ion peak m their mass spectra Aldehydes also exhibit an M— 1 peak A major fragmentation pathway for both aldehydes and ketones leads to formation of acyl cations (acylium ions) by cleavage of an alkyl group from the carbonyl The most intense peak m the mass spectrum of diethyl ketone for example is m z 57 corresponding to loss of ethyl radi cal from the molecular ion... [Pg.741]

Nd in samples. Unfortunately, mass spectrometry is not a selective technique. A mass spectrum provides information about the abundance of ions with a given mass. It cannot distinguish, however, between different ions with the same mass. Consequently, the choice of TIMS required developing a procedure for separating the tracer from the aerosol particulates. [Pg.8]

In many applications in mass spectrometry (MS), the sample to be analyzed is present as a solution in a solvent, such as methanol or acetonitrile, or an aqueous one, as with body fluids. The solution may be an effluent from a liquid chromatography (LC) column. In any case, a solution flows into the front end of a mass spectrometer, but before it can provide a mass spectrum, the bulk of the solvent must be removed without losing the sample (solute). If the solvent is not removed, then its vaporization as it enters the ion source would produce a large increase in pressure and stop the spectrometer from working. At the same time that the solvent is removed, the dissolved sample must be retained so that its mass spectrum can be measured. There are several means of effecting this differentiation between carrier solvent and the solute of interest, and thermospray is just one of them. Plasmaspray is a variant of thermospray in which the basic method of solvent removal is the same, but the number of ions obtained is enhanced (see below). [Pg.71]

However, interpretation of, or even obtaining, the mass spectrum of a peptide can be difficult, and many techniques have been introduced to overcome such difficulties. These techniques include modifying the side chains in the peptide and protecting the N- and C-terminals by special groups. Despite many advances made by these approaches, it is not always easy to read the sequence from the mass spectrum because some amide bond cleavages are less easy than others and give little information. To overcome this problem, tandem mass spectrometry has been applied to this dry approach to peptide sequencing with considerable success. Further, electrospray ionization has been used to determine the molecular masses of proteins and peptides with unprecedented accuracy. [Pg.333]

In many applications of mass spectrometry, it is necessary to obtain a mass spectrum from a sample dissolved in a solvent. The solution cannot be passed directly into the mass spectrometer because, in the high vacuum, the rapidly vaporizing solvent would entail a large pressure increase, causing the instrument to shut down. [Pg.389]

After acceleration through an electric field, ions pass (drift) along a straight length of analyzer under vacuum and reach a detector after a time that depends on the square root of their m/z values. The mass spectrum is a record of the abundances of ions and the times (converted to m/z) they have taken to traverse the analyzer. TOP mass spectrometry is valuable for its fast response time, especially for substances of high mass that have been ionized or selected in pulses. [Pg.407]

Acridizinium salts, lO-(phenylsuIfonyl)-synthesis, 2, 545 5-Acridone UV spectrum, 2, 156 9-Acridone acylation, 2, 352 alkylation, 2, 350 synthesis, 2, 422 Acridone alkaloids, 2, 513 9-Acridonequinones synthesis, 2, 348 Acridones fluorescence, 2, 20 mass spectrometry, 2, 134 synthesis, 2, 93, 401 from 3-arylanthranils, 2, 496 from benzotriazinones, 2, 506 tautomerism, 2, 347 Acridones, tetrahydro-synthesis... [Pg.511]

The C NMR spectrum of the metabolite shows 16 signals instead of 8 as expected from the elemental composition determined by high-resolution mass spectrometry. Moreover, aromaticity of the 2,6-xylenol is obviously lost after metabolism because two ketonic carbonyl carbon atoms (5c = 203.1 and 214.4) and four instead of twelve carbon signals are observed in the shift range of trigonal carbon nuclei (5c = 133.1, 135.4, 135.6 and 139.4) in the C NMR spectra. To conclude, metabolism involves oxidation of the benzenoid ring. [Pg.220]

In Laser Ionization Mass Spectrometry (LIMS, also LAMMA, LAMMS, and LIMA), a vacuum-compatible solid sample is irradiated with short pulses ("10 ns) of ultraviolet laser light. The laser pulse vaporizes a microvolume of material, and a fraction of the vaporized species are ionized and accelerated into a time-of-flight mass spectrometer which measures the signal intensity of the mass-separated ions. The instrument acquires a complete mass spectrum, typically covering the range 0— 250 atomic mass units (amu), with each laser pulse. A survey analysis of the material is performed in this way. The relative intensities of the signals can be converted to concentrations with the use of appropriate standards, and quantitative or semi-quantitative analyses are possible with the use of such standards. [Pg.44]

In gas chromatography/mass spectrometry (GC/MS), the effluent from a gas chromatograph is passed into a mass spectrometer and a mass spectrum is taken every few milliseconds. Thus gas chromatography is used to separate a mixture, and mass spectrometry used to analyze it. GC/MS is a very powerful analytical technique. One of its more visible applications involves the testing of athletes for steroids, stimulants, and other performance-enhancing drugs. These drugs are converted in the body to derivatives called metabolites, which are then excreted in the... [Pg.573]

Understanding how molecules fragment upon electron impact pennits a mass spectrum to be analyzed in sufficient detail to deduce the structure of an unknown compound. Thousands of compounds of known structure have been examined by mass spectrometry, and the fragmentation patterns that characterize different classes are well documented. As various groups are covered in subsequent chapters, aspects of their fragmentation behavior under conditions of electron impact will be described. [Pg.573]

Mass Spectrometry The molecular- ion peak is usually quite small in the mass spectrum of an alcohol. A peak conesponding to loss of water is often evident. Alcohols also fragment readily by a pathway in which the rnoleculai- ion loses an alkyl group from the... [Pg.652]


See other pages where Mass spectrometry spectra is mentioned: [Pg.309]    [Pg.601]    [Pg.601]    [Pg.87]    [Pg.87]    [Pg.407]    [Pg.92]    [Pg.309]    [Pg.601]    [Pg.601]    [Pg.87]    [Pg.87]    [Pg.407]    [Pg.92]    [Pg.1330]    [Pg.571]    [Pg.573]    [Pg.17]    [Pg.55]    [Pg.134]    [Pg.153]    [Pg.195]    [Pg.287]    [Pg.343]    [Pg.300]    [Pg.582]    [Pg.942]    [Pg.21]    [Pg.133]    [Pg.189]    [Pg.1032]    [Pg.571]    [Pg.48]   
See also in sourсe #XX -- [ Pg.467 , Pg.467 ]




SEARCH



Mass spectrometry complex spectra

Mass spectrometry electronic spectrum

Spectra in mass spectrometry

Spectra spectrometry

© 2024 chempedia.info