Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Manganese selectivities

Even ia 1960 a catalytic route was considered the answer to the pollution problem and the by-product sulfate, but nearly ten years elapsed before a process was developed that could be used commercially. Some of the eadier attempts iacluded hydrolysis of acrylonitrile on a sulfonic acid ion-exchange resia (69). Manganese dioxide showed some catalytic activity (70), and copper ions present ia two different valence states were described as catalyticaHy active (71), but copper metal by itself was not active. A variety of catalysts, such as Umshibara or I Jllmann copper and nickel, were used for the hydrolysis of aromatic nitriles, but aUphatic nitriles did not react usiag these catalysts (72). Beginning ia 1971 a series of patents were issued to The Dow Chemical Company (73) describiag the use of copper metal catalysis. Full-scale production was achieved the same year. A solution of acrylonitrile ia water was passed over a fixed bed of copper catalyst at 85°C, which produced a solution of acrylamide ia water with very high conversions and selectivities to acrylamide. [Pg.135]

Thermodynamic data (4) for selected manganese compounds is given ia Table 3 standard electrode potentials are given ia Table 4. A pH—potential diagram for aqueous manganese compounds at 25°C is shown ia Figure 1 (9). [Pg.501]

Table 4. Standard Reduction Potentials for Selected Manganese Compounds... Table 4. Standard Reduction Potentials for Selected Manganese Compounds...
Divalent manganese compounds are stable in acidic solutions but are readily oxidized under alkaline conditions. Most soluble forms of manganese that occur in nature are of the divalent state. Manganese(Il) compounds are characteristically pink to colorless, with the exception of MnO and MnS which are green, and Mn(OH)2, which is white. The physical properties of selected manganese(Il) compounds are given in Table 6. [Pg.504]

Table 20. Toxicity Data for Select Manganese Compounds ... Table 20. Toxicity Data for Select Manganese Compounds ...
Other Types of Portland Cements. White Portland cementis standard Type I or III Pordand cement with raw materials selected and controUed to have negligible amounts of Hon and manganese oxides, which impart the gray color. The white Pordand cement is used in decorative and architectural appHcations like precast curtain waUs, terra22o surfaces, stucco, tile grout, and decorative concrete. [Pg.323]

Catalytic Oxidation for Straight-Chain Paraffinic Hydrocarbons. Synthetic fatty acids (SFA) are produced by Eastern European countries, Russia, and China using a manganese-catalyzed oxidation of selected paraffinic streams. The technology is based on German developments that were in use during World War II. The production volume in 1984 was estimated to be about 5.5 x ICf t/yr. The oxidation is highly exothermic and is carried out at about 105—125°C, mostly in continuous equipment. [Pg.92]

Some metals, such as cadmium, cobalt, and lead, are selectively car-diotoxic. They depress contractivity and slow down conduction in the cardiac-system. They may also cause morphological alterations, e.g., cobalt, which was once used to prevent excessive foam formation in beers, caused cardiomyopathy among heavy beer drinkers. Some of the metals also block ion channels in myocytes. Manganese and nickel block calcium channels, whereas barium is a strong inducer of cardiac arrhythmia. [Pg.297]

Nickel peroxide is a solid, insoluble oxidant prepared by reaction of nickel (II) salts with hypochlorite or ozone in aqueous alkaline solution. This reagent when used in nonpolar medium is similar to, but more reactive than, activated manganese dioxide in selectively oxidizing allylic or acetylenic alcohols. It also reacts rapidly with amines, phenols, hydrazones and sulfides so that selective oxidation of allylic alcohols in the presence of these functionalities may not be possible. In basic media the oxidizing power of nickel peroxide is increased and saturated primary alcohols can be oxidized directly to carboxylic acids. In the presence of ammonia at —20°, primary allylic alcohols give amides while at elevated temperatures nitriles are formed. At elevated temperatures efficient cleavage of a-glycols, a-ketols... [Pg.248]

Trdtismrtalations witli first row transition metal elements sudi as titanium or manganese have produced usefid syntlietic applications. Organotitanate species of type 123 show tlie advantage of higli S 2 selectivity in tlie emit stereocliemistry of tlie resulting copperil) intetenediates iSclieme 2.56) [119, 120]. [Pg.70]

Analysis of the volumetric effects indicates that as a result of such mechanical activation, iron and manganese are concentrated in the extended part of the crystal, while tantalum and niobium are predominantly collected in the compressed part of the distorted crystal structure. It is interesting to note that this effect is more pronounced in the case of tantalite than it is for columbite, due to the higher rigidity of the former. Akimov and Chernyak [452] concluded that the effect of redistribution of the ions might cause the selective predominant dissolution of iron and manganese during the interaction with sulfuric acid and other acids. [Pg.260]

Discussion. In mixtures of magnesium and manganese the sum of both ion concentrations may be determined by direct EDTA titration. Fluoride ion will demask magnesium selectively from its EDTA complex, and if excess of a standard solution of manganese ion is also added, the following reaction occurs at room temperature ... [Pg.334]

A detailed study of the dehydrogenation of 10.1 l-dihydro-5//-benz[6,/]azcpinc (47) over metal oxides at 550 C revealed that cobalt(II) oxide, iron(III) oxide and manganese(III) oxide are effective catalysts (yields 30-40%), but formation of 5//-dibenz[7),/]azepinc (48) is accompanied by ring contraction of the dihydro compound to 9-methylacridine and acridine in 3-20 % yield.111 In contrast, tin(IV) oxide, zinc(II) oxide. chromium(III) oxide, cerium(IV) oxide and magnesium oxide arc less-effective catalysts (7-14% yield) but provide pure 5H-dibenz[b,/]azepine. On the basis of these results, optimum conditions (83 88% selectivity 94-98 % yield) for the formation of the dibenzazepine are proposed which employ a K2CO,/ Mn203/Sn02/Mg0 catalyst (1 7 3 10) at 550 C. [Pg.235]

At PicArsn, both thermal and fast NAA were compared for non-destructive gross element assay in selected materials used in ammo (Ref 14), specifically A1 in aluminized high expls (eg, Minols), Cl in AP and Mn in manganese dioxide (as used in pyrotechnic flare compns). [Pg.363]


See other pages where Manganese selectivities is mentioned: [Pg.402]    [Pg.2201]    [Pg.261]    [Pg.402]    [Pg.2201]    [Pg.261]    [Pg.106]    [Pg.68]    [Pg.324]    [Pg.510]    [Pg.511]    [Pg.514]    [Pg.293]    [Pg.280]    [Pg.326]    [Pg.412]    [Pg.283]    [Pg.371]    [Pg.429]    [Pg.142]    [Pg.368]    [Pg.244]    [Pg.245]    [Pg.246]    [Pg.247]    [Pg.108]    [Pg.905]    [Pg.513]    [Pg.696]    [Pg.783]    [Pg.444]    [Pg.205]    [Pg.206]    [Pg.219]    [Pg.71]    [Pg.85]    [Pg.89]    [Pg.324]   
See also in sourсe #XX -- [ Pg.150 ]




SEARCH



Manganese oxides selective dissolution

Manganese sorption selectivity

© 2024 chempedia.info