Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Manganese cation properties

One-electron reduction or oxidation of organic compounds provides a useful method for the generation of anion radicals or cation radicals, respectively. These methods are used as key processes in radical reactions. Redox properties of transition metals can be utilized for the efficient one-electron reduction or oxidation (Scheme 1). In particular, the redox function of early transition metals including titanium, vanadium, and manganese has been of synthetic potential from this point of view [1-8]. The synthetic limitation exists in the use of a stoichiometric or excess amount of metallic reductants or oxidants to complete the reaction. Generally, the construction of a catalytic redox cycle for one-electron reduction is difficult to achieve. A catalytic system should be constructed to avoid the use of such amounts of expensive and/or toxic metallic reagents. [Pg.64]

The catalytic application of clays is related closely to their swelling properties. Appropriate swelling enables the reactant to enter the interlamellar region. The ion exchange is usually performed in aquatic media because the swelling of clays in organic solvents, and thus the expansion of the interlayer space, is limited and it makes it difficult for a bulky metal complex to penetrate between the layers. Nonaqueous intercalation of montmorillonite with a water-sensitive multinuclear manganese complex was achieved, however, with the use of nitromethane as solvent.139 The complex cation is intercalated parallel to the sheets. [Pg.259]

Martin BE and Petrie A. Electrical properties of copper-manganese spinal solutions and their cation valence and cation distribution. J. Phys. Chem. Solids 2007 68 2262-2270. [Pg.212]

York and New England are devoid of fish due to the effects of acid rain. Indirect effects of the low pH values associated with acid rain also affect organisms. As noted in Table 13.1, one of the properties of an acid is the ability to dissolve certain metals. This has a profound effect on soil subjected to acid rain. Acid rain can mobilize metal ions such as aluminum, iron, and manganese in the basin surrounding a lake. This not only depletes the soil of these cations disrupting nutrient uptake in plants, but also introduces toxic metals into the aquatic system. [Pg.166]

Several additional studies were carried out to obtain information about the precise behavior of the various components in the model system. The interplay between the manganese porphyrin and the rhodium cofactor was found to be crucial for an efficient catalytic performance of the whole assembly and, hence, their properties were studied in detail at different pH values in vesicle bilayers composed of various types of amphiphiles, viz. cationic (DODAC), anionic (DHP), and zwitterionic (DPPC) [30]. At pH values where the reduced rhodium species is expected to be present as Rh only, the rate of the reduction of 13 by formate increased in the series DPPC < DHP < DODAC, which is in line with an expected higher concentration of formate ions at the surface of the cationic vesicles. The reduction rates of 12 incorporated in the vesicle bilayers catalyzed by 13-formate increased in the same order, because formation of the Rh-formate complex is the rate-determining step in this reduction. When the rates of epoxidation of styrene were studied at pH 7, however, the relative rates were found to be reversed DODAC DPPC < DHP. Apparently, for epoxidation to occur, an efficient supply of protons to the vesicle surface is essential, probably for the step in which the Mn -02 complex breaks down into the active epoxidizing Mn =0 species and water. Using a-pinene as the substrate in the DHP-based system, a turnover number of 360 was observed, which is comparable to the turnover numbers observed for cytochrome P450 itself. [Pg.155]

CNTs were also demonstrated to be a perfect support for cheap transition metal oxides of poor electrical conductivity, such as amorphous manganese oxide (a-Mn02 H20) [5,96], The pseudocapacitance properties of hydrous oxides are attributed to the redox exchange of protons and/or cations with the electrolyte as in Equation 8.13 for a-Mn02 H20 [97] ... [Pg.356]

Enhancement by strong acids such as TFA is a general feature of oxidations with metal acetates. Metal trifluoroacetates in TFA are much more powerful oxidants (electrophiles) than the corresponding acetates in acetic acid. Activation of the metal oxidant in TFA has been observed with co-balt(III)217 249,259,27S 276 manganese(III),237,275 lead(IV),277-281 thallium-(III),282-287 cerium(IV),288 289 and copper(II).290 Similarly, the electrophilic properties of copper(I)291 and mercury(II)292 acetates are strongly enhanced by replacement of acetate by trifluoroacetate. It has been proposed217,276 that the potent oxidizing properties of Co(III) trifluoroacetate are due to ionization to the cationic Co(III) species,... [Pg.320]

A wide range of research publications has identified various soil properties and their potential influence on substance behavior. Soil properties such as organic matter, iron, manganese, and aluminum (hydro)oxide concentrations, cation exchange capacity, and pH can all affect the bioavailability, form, and toxicity of substances. [Pg.118]

It was shown in [18] that practically monophase fine barium hexaaluminate can be obtained by mechanical activation of a mixture of barium oxide with Y-AI2O3, which exhibits acid properties to a larger extent than a-Al203, and by consequent thermal treatments at increased temperature. The product then is grinded in the presence of water. The synthesis was shown to proceed almost completely after activation for 5 min in the AGO-2 planetary mill and thermal treatment at 1300°C for 1 h. Mechanical activation of the mixture of aluminium hydroxide with barium oxide, followed by thermal treatment at 900°C, results in the formation of the final product and a-Al203 as an admixture which remains even at 1300°C. Mechanochemical synthesis helped also to synthesize barinm hexaaluminate in which a part of aluminium cations is replaced with manganese, iron, cobalt cations. Such compounds are nsed as active ceramics in catalysis [17]. [Pg.84]

Tthe reactions between LiOH and Li2COi with different manganese oxides can be viewed as acid-base interactions. According to Lewis classification, lithium compounds are bases whereas manganese oxides are acids of different strength. Acid-base properties of oxides significantly depend on the oxidation degree of cation. The acidity increases in the raw... [Pg.114]


See other pages where Manganese cation properties is mentioned: [Pg.71]    [Pg.73]    [Pg.459]    [Pg.505]    [Pg.1048]    [Pg.85]    [Pg.88]    [Pg.197]    [Pg.37]    [Pg.1122]    [Pg.482]    [Pg.81]    [Pg.65]    [Pg.11]    [Pg.41]    [Pg.149]    [Pg.265]    [Pg.271]    [Pg.6]    [Pg.188]    [Pg.186]    [Pg.206]    [Pg.623]    [Pg.83]    [Pg.571]    [Pg.241]    [Pg.511]    [Pg.71]    [Pg.90]    [Pg.323]    [Pg.668]    [Pg.398]    [Pg.127]    [Pg.149]    [Pg.475]    [Pg.6]    [Pg.140]    [Pg.422]    [Pg.113]   
See also in sourсe #XX -- [ Pg.379 ]




SEARCH



Cationic properties

Manganese properties

© 2024 chempedia.info