Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Low-molar mass

Gray G W 1990 Low-molar-mass thermotropio liquid orystals Phil. Trans. R. Soc. A 330 73... [Pg.2566]

The next approach to incorporate the 12F-diol into a polyurethane matrix was reaction of the y -12F-diol with aUphatic diacid chlorides (where a = 3 or 4) to give low molar mass polyesters (141) ... [Pg.540]

If two columns with different porosity are used in a column combination, the efficiency of the separation will not change much, but the fractionation range will be increased immensely. In this case, longer chromatography times allow a better separation of broader samples (or samples with high and low molar mass components). [Pg.275]

Ideally, the sample should be injected onto the column as an infinitely thin disc, which covers the total cross section of the column. Because this is impossible, PSS has injected finite volumes onto the columns. In theory, these injection volumes should be as low as possible. In order to be able to detect the sample with significance, a certain (high) concentration of the sample has to be injected. This concept works well for low molar mass compounds, which do not generate much sample viscosity. However, when working with samples... [Pg.282]

FIGURE 9.9 Definition of column test parameters using a SEC chromatogram of a polymer standard mixture (PSS Polystyrene ReadyCal) and a low molar mass compound (BHT). [Pg.286]

As stated in Section I, columns should be selected so the low molar mass portions of the samples in question can be sufficiently separated from the elution interval of the system peaks. This task cannot always be accomplished, e.g., dimethylacetamide often replaces dimethylformamide as a GPC eluent the analyzed, mostly polar, samples require a neutral salt (e.g., FiBr) (7). The calibration is usually carried out with poly(methylmethacrylate) standards... [Pg.439]

PMMA). Under these conditions, some inevitable peaks are observed in the low molar mass range. This area starts for an elution volume of Mpmma of about 600. Enclosing a further column for this low molecular size range generally improves the separation, but the elution sequence of oligomer and disturbing peaks remains constant. [Pg.440]

The reason for such difficulties is the GPC mechanism itself. We do not separate by molar mass but by the size of the solvated molecules. Different solvation of chemical unlike molecules results in breaking the M sequence of the calibration curve this becomes visible especially in the low molar mass range. Sometimes such difficulties can be circumvented if a specific detector is used, e.g., if the sample absorbs in the ultraviolet (UV) range and the disturbing peaks are UV transparent. [Pg.440]

Most size exclusion chromatography (SEC) practitioners select their columns primarily to cover the molar mass area of interest and to ensure compatibility with the mobile phase(s) applied. A further parameter to judge is the column efficiency expressed, e.g., by the theoretical plate count or related values, which are measured by appropriate low molar mass probes. It follows the apparent linearity of the calibration dependence and the attainable selectivity of separation the latter parameter is in turn connected with the width of the molar mass range covered by the column and depends on both the pore size distribution and the pore volume of the packing material. Other important column parameters are the column production repeatability, availability, and price. Unfortunately, the interactive properties of SEC columns are often overlooked. [Pg.445]

Table 21.1 (p. 556) lists some of the properties of the eight nonmetals considered in this chapter. Notice that all of these elements are molecular those of low molar mass (N2> 02, F2> Cl2) are gases at room temperature and atmospheric pressure (Figure 21.2, p. 556). Stronger dispersion forces cause the nonmetals of higher molar mass to be either liquids (Br2) or solids (I2, P4. S8). [Pg.555]

Hie most representative member of this class of polyesters is the low-molar-mass (M 1000-3000) hydroxy-terminated aliphatic poly(2,2/-oxydiethylene adipate) obtained by esterification between adipic acid and diethylene glycol. This oligomer is used as a macromonomer in the synthesis of polyurethane elastomers and flexible foams by reaction with diisocyanates (see Chapter 5). Hydroxy-terminated poly(f -caprolactonc) and copolyesters of various diols or polyols and diacids, such as o-phthalic acid or hydroxy acids, broaden the range of properties and applications of polyester polyols. [Pg.29]

Unsaturated polyesters are low-molar-mass polyesters obtained by melt polycondensation of 1,2-diols with saturated and unsaturated anhydrides or dibasic... [Pg.29]

The polymerization of cyclic low-molar-mass polycarbonates, polyarylates, and PBT to high-molar-mass thermoplastics has been extensively studied by the General Electric Company during the last decade.57,58 Due to very low viscosity, cyclic oligoesters can be processed like thermosetting resins but retain thermoplastic properties in the final state, after polymerization in the presence of suitable... [Pg.31]

Unsaturated polyesters are low-molar-mass polymers (1500-2500) obtained by the polyesterification of stoichiometric mixtures of diols and mixtures of saturated and unsaturated diacids or anhydrides (see Section 2.4.2.1). [Pg.58]

From the preceding discussion, it is easily understood that direct polyesterifications between dicarboxylic acids and aliphatic diols (Scheme 2.8, R3 = H) and polymerizations involving aliphatic or aromatic esters, acids, and alcohols (Scheme 2.8, R3 = alkyl group, and Scheme 2.9, R3 = H) are rather slow at room temperature. These reactions must be carried out in the melt at high temperature in the presence of catalysts, usually metal salts, metal oxides, or metal alkoxides. Vacuum is generally applied during the last steps of the reaction in order to eliminate the last traces of reaction by-product (water or low-molar-mass alcohol, diol, or carboxylic acid such as acetic acid) and to shift the reaction toward the... [Pg.61]

Although low-molar-mass aliphatic polyesters and unsaturated polyesters can be synthesized without added catalyst (see Sections 2.4.1.1.1 and 2.4.2.1), the presence of a catalyst is generally required for the preparation of high-molar-mass polyesters. Strong acids are very efficient polyesterification catalysts but also catalyze a number of side reactions at elevated temperature (>160°C), leading to polymers of inferior quality. Acid catalysts are, therefore, not much used. An exception is the bulk synthesis of hyperbranched polyesters reported in Section 2.4.5.1, which is carried out at moderate temperature (140°C) under vacuum in the presence of p-toluene sulfonic acid catalyst. The use of strongly acidic oil-soluble catalysts has also been reported for the low-temperature synthesis of polyester oligomers in water-in-oil emulsions.216... [Pg.64]

The reported molar masses of polyesters obtained by enzymatic catalysis are relatively low, generally below 8000, except for polymers recovered by precipitation.336 This procedure results in the elimination of a soluble fraction consisting of low-molar-mass linear and cyclic oligomers.336 An Mw as high as 46,400 has thus been reported for a poly(tetramethylene decanedioate) obtained... [Pg.83]

The synthesis of high-molar-mass PLA and PGA by two-step polycondensations of lactic and glycolic acids, respectively, has recently been reported.374,375 It involves the formation of a low-molar-mass oligomer followed by a polycondensation step either in the solid state374 or in the melt under vacuum.375 The procedures are detailed in Section 2.4.1.5.2. [Pg.86]

Note Purification by precipitation results in the elimination of low-molar-mass oligomers and cyclics and yields polyesters with narrower distributions than the theoretical one (/p = 2). [Pg.98]

Note-. Bisphenol-A and the diaryl esters of terephthalic acid and isophthalic acid are nonvolatile compounds, so that any excess of these components cannot completely be removed, resulting in a low-molar-mass, unusable polyester. Moreover, excess bisphenol-A causes a strong discoloration of the polyester melt due to thermal degradation at the high reaction temperature used. This can be avoided if the diaryl esters are mixed with 5 mol% of diphenyl carbonate. Any excess of this compound can easily be removed in vacuum at the polycondensation temperature. [Pg.112]

Eleven elements are gases under normal conditions (Fig. 4.2). So are many compounds with low molar masses, such as carbon dioxide, hydrogen chloride, and organic compounds such as the methane, CH4, of natural gas and the... [Pg.261]

This sequence of reactions is a useful route to the pure element, but more complex boranes form when the heating is less severe. When diborane is heated to 100°C, for instance, it forms decaborane, B]0H14, a solid that melts at 100°C. Decaborane is stable in air, is oxidized by water only slowly, and is an example of the general rule that heavier boranes are less flammable than boranes of low molar mass. [Pg.723]

Alcohols with low molar masses are liquids, and alcohols have much lower vapor pressures than do hydrocarbons with approximately the same molar mass. For example, ethanol is a liquid at room temperature, but butane, which has a higher molar mass than ethanol, is a gas. The relatively low volatility of alcohols is a sign of the strength of hydrogen bonds. The ability of alcohols to form hydrogen bonds also accounts for the solubility in water of alcohols with low molar mass. [Pg.875]

Methods of synthesising these polymers are available and may include polymerisation of low molar mass units ( blocks ) of homopolymer which are later reacted together to yield the copolymer. [Pg.39]

To understand this in more detail, we can consider the liquid to be based on a lattice arrangement. For low molar mass solutes, each point in the lattice can be considered to be occupied by either a solvent or solute molecule. The possible arrangements of solute and solvent molecules in an extensive lattice will be very large, as shown in Figure 5.1a. According to the Boltzmann equation. [Pg.70]

If we now put a polymer into this lattice, we can no longer place one molecule of solute at each lattice site. Instead, we can put only one segment of the polymer molecule at any one lattice site, as shown in Figure 5.1b. When we do this we see that there are many fewer possible arrangements for the system. The value of W is thus much lower than for the low molar mass solute, hence so is 5. [Pg.70]

Figure 5.1 Lattice arrangements for (a) low molar mass solute in solution and (b) polymer in solution... Figure 5.1 Lattice arrangements for (a) low molar mass solute in solution and (b) polymer in solution...

See other pages where Low-molar mass is mentioned: [Pg.533]    [Pg.542]    [Pg.1055]    [Pg.440]    [Pg.442]    [Pg.114]    [Pg.238]    [Pg.375]    [Pg.591]    [Pg.12]    [Pg.18]    [Pg.31]    [Pg.43]    [Pg.64]    [Pg.66]    [Pg.69]    [Pg.74]    [Pg.81]    [Pg.86]    [Pg.88]    [Pg.588]    [Pg.286]    [Pg.6]    [Pg.70]   
See also in sourсe #XX -- [ Pg.181 ]




SEARCH



Low-mass

Molar mass

Molarity molar masses

© 2024 chempedia.info