Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Localized corrosion stainless steels

An especially insidious type of corrosion is localized corrosion (1—3,5) which occurs at distinct sites on the surface of a metal while the remainder of the metal is either not attacked or attacked much more slowly. Localized corrosion is usually seen on metals that are passivated, ie, protected from corrosion by oxide films, and occurs as a result of the breakdown of the oxide film. Generally the oxide film breakdown requires the presence of an aggressive anion, the most common of which is chloride. Localized corrosion can cause considerable damage to a metal stmcture without the metal exhibiting any appreciable loss in weight. Localized corrosion occurs on a number of technologically important materials such as stainless steels, nickel-base alloys, aluminum, titanium, and copper (see Aluminumand ALUMINUM ALLOYS Nickel AND nickel alloys Steel and Titaniumand titanium alloys). [Pg.274]

Corrosion resistance of stainless steel is reduced in deaerated solutions. This behavior is opposite to the behavior of iron, low-alloy steel, and most nonferrous metals in oxygenated waters. Stainless steels exhibit very low corrosion rates in oxidizing media until the solution oxidizing power becomes great enough to breach the protective oxide locally. The solution pH alone does not control attack (see Chap. 4, Underdeposit Corrosion ). The presence of chloride and other strong depassivating chemicals deteriorates corrosion resistance. [Pg.103]

Corrosion morphologies. Sulfate-reducing bacteria frequently cause intense localized attack (Figs. 6.2 through 6.7). Discrete hemispherical depressions form on most alloys, including stainless steels, aluminum. Carpenter 20, and carbon steels. Few cases occur on titanium. Copper alloy attack is not well defined. [Pg.128]

Stainless steels tend to pit in acid solutions. Pits form local areas of metal loss associated with breakdown of a protective oxide layer. Breakdown is stimulated by low pH as well as by the decrease of dissolved oxygen in occluded regions. Small, active pit sites form and remain stable because of the large ratio of cathodic surface area (unattacked metal surface) to the pit area. Active corrosion in the pit cathodically protects immediately adjacent areas. If conditions become very severe, pitting will give way to general attack as more and more of the surface becomes actively involved in corrosion. [Pg.161]

Alloys whose corrosion resistance depends on forming a protective oxide layer, such as stainless steel, are susceptible to severe localized attack when pH falls as a result of nonoxidizing acid excursions. How-... [Pg.162]

Dents in tubing can induce erosion failures, especially in soft metals such as copper and brass. Welding and improper heat treatment of stainless steel can lead to localized corrosion or cracking through a change in the microstructure, such as sensitization. Another form of defect is the inadvertent substitution of an improper material. [Pg.316]

The triggering mechanism for the corrosion process was localized depassivation of the weld-metal surface. Depassivation (loss of the thin film of chromium oxides that protect stainless steels) can be caused by deposits or by microbial masses that cover the surface (see Chap. 4, Underdeposit Corrosion and Chap. 6, Biologically Influenced Corrosion ). Once depassivation occurred, the critical features in this case were the continuity, size, and orientation of the noble phase. The massive, uninterrupted network of the second phase (Figs. 15.2 and 15.21), coupled... [Pg.346]

Galvanic corrosion may also occur by transport of relatively noble metals, either as particulate or as ions, to the surface of an active metal. For example, ions of copper, perhaps resulting from corrosion or erosion-corrosion at an upstream site, may be carried by cooling water to the surfaces of aluminum, steel, or even stainless steel components. If the ions are reduced and deposit on the component surfaces, localized galvanic corrosion may result. [Pg.358]

Certain anions, especially chloride, penetrate the protective films, which are naturally present on some metals (e.g. aluminum and its alloys and stainless steels). This process is an initiator for corrosion, especially for localized corrosion. [Pg.890]

Pitting is a form of localized corrosion in which part of a metal surface (perhaps 1 per cent of the exposed area) is attacked. Rates of pitting penetration can be very high type 316 stainless steel in warm seawater can suffer pit penetration rates of 10 mm per year. This is a natural... [Pg.891]

Items of plant fabricated from stainless steels should be inspected before first use and after any maintenance work or unplanned shutdown. All materials that rely for their corrosion resistance on the presence of an oxide or similar passive layer are susceptible to localized attack where that layer is absent or damaged. Damage is most commonly caused by scratching, metallic contamination (nearby grinding or touching with ferrous tools), embedding of grit and weld spatter. [Pg.901]

Metals which owe their good corrosion resistance to the presence of thin, passive or protective surface films may be susceptible to pitting attack when the surface film breaks down locally and does not reform. Thus stainless steels, mild steels, aluminium alloys, and nickel and copper-base alloys (as well as many other less common alloys) may all be susceptible to pitting attack under certain environmental conditions, and pitting corrosion provides an excellent example of the way in which crystal defects of various kinds can affect the integrity of surface films and hence corrosion behaviour. [Pg.49]

Localised corrosion can occur if the passivating element of an alloy is locally depleted from the matrix. This may occur in the sensitized regions of stainless steels for example, as outlined above. Other alloy components too. [Pg.142]

The addition of a minimum of 2% molybdenum content in type 316 stainless steel has been shown to reduce the tendency for pitting-type corrosion in chloride environments. Hoar and Mears postulated that chloride ions accelerate the corrosion of stainless steel by penetrating the oxide him. The chloride-contaminated him then loses its passivating quality and a local attack on the metal follows, creating a pit. The exact mechanism by which molybdenum strengthens the oxide him is not clearly understood. ... [Pg.476]

The local dissolution rate, passivation rate, film thickness and mechanical properties of the oxide are obviously important factors when crack initiation is generated by localised plastic deformation. Film-induced cleavage may or may not be an important contributor to the growth of the crack but the nature of the passive film is certain to be of some importance. The increased corrosion resistance of the passive films formed on ferritic stainless steels caused by increasing the chromium content in the alloy arises because there is an increased enhancement of chromium in the film and the... [Pg.1205]

Fig. 19.16 Schematic E — I diagrams of local cell action on stainless steel in CUSO4 + H2SO4 solution showing the effect of metallic copper on corrosion rate. C and A are the open-circuit potentials of the local cathodic and anodic areas and / is the corrosion current. The electrode potentials of a platinised-platinum electrode and metallic copper immersed in the same solution as the stainless steel are indicated by arrows, (a) represents the corrosion of stainless steel in CUSO4 -I- H2 SO4, (b) the rate when copper is introduced into the acid, but is not in contact with the steel, and (c) the rate when copper is in contact with the stainless steel... Fig. 19.16 Schematic E — I diagrams of local cell action on stainless steel in CUSO4 + H2SO4 solution showing the effect of metallic copper on corrosion rate. C and A are the open-circuit potentials of the local cathodic and anodic areas and / is the corrosion current. The electrode potentials of a platinised-platinum electrode and metallic copper immersed in the same solution as the stainless steel are indicated by arrows, (a) represents the corrosion of stainless steel in CUSO4 -I- H2 SO4, (b) the rate when copper is introduced into the acid, but is not in contact with the steel, and (c) the rate when copper is in contact with the stainless steel...
A form of boiler waterside, caustic stress-corrosion cracking corrosion affecting carbon steels and austenitic stainless steels (300 series). Particularly associated with high localized concentrations of deposited sodium hydroxide (caustic soda). [Pg.722]


See other pages where Localized corrosion stainless steels is mentioned: [Pg.668]    [Pg.702]    [Pg.657]    [Pg.2733]    [Pg.126]    [Pg.2423]    [Pg.10]    [Pg.72]    [Pg.317]    [Pg.365]    [Pg.14]    [Pg.474]    [Pg.892]    [Pg.894]    [Pg.901]    [Pg.904]    [Pg.905]    [Pg.905]    [Pg.11]    [Pg.53]    [Pg.140]    [Pg.145]    [Pg.212]    [Pg.237]    [Pg.1197]    [Pg.1199]    [Pg.1205]    [Pg.1211]    [Pg.23]    [Pg.1037]    [Pg.541]    [Pg.209]    [Pg.216]    [Pg.234]   
See also in sourсe #XX -- [ Pg.273 ]




SEARCH



Local corrosion

Stainless steels corrosion

Steel corrosion

© 2024 chempedia.info