Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid organic solvent selection

Insulating and dielectric materials include numerous and various classes of materials including liquid organic solvents, ceramics, glasses, polymers and elastomers, woods, minerals, rocks, and paper. Dielectric properties of selected dielectrics are given in Table 8.5. For additional materials, refer to the appropriate section in this book dealing with the desired class of material (e.g., ceramics, polymers, etc.). [Pg.539]

Another reactive separation processes studied for ethyl lactate production is the catalytic extractive reaction (Figure 20.4.7). In this case, the esterification is performed in a biphasic liquid solvent system composed by a reactive polar liquid phase which contains the esterification constituents lactic acid, eflianol and catalyst, and an extractive organic solvent selective of the ester. Therefore, ethyl lactate should preferably be dissolved in the extractive organic phase shifting, in this way, the reaction equilibrium to ester formation. The immiscible extractive solvent is an aromatic or other solvent like toluene, benzene or diethyl ether, among others. Nevertheless, it has also been used an immiscible solvent based on fatty acid methyl ester, but in this case, the procedure represents a method to produce an organic biosolvent and not just ethyl lactate as solvent. [Pg.747]

The results in the ionic liquid were compared with those obtained in four conventional organic solvents. Interestingly, the reaction in the ionic liquid proceeded with very high selectivity to give the a-arylated compound, whereas variable mixtures of the a- and (3-isomers were obtained in the organic solvents DMF, DMSO, toluene, and acetonitrile. Furthermore, no formation of palladium black was observed in the ionic liquid, while this was always the case with the organic solvents. [Pg.242]

The selective, Ni-catalyzed, biphasic dimerization of 1-butene to linear octenes has been studied in the author s group. A catalytic system well loiown for its ability to form linear dimers from 1-butene in conventional organic solvents - namely the square-planar Ni-complex (q-4-cycloocten-l-yl](l,l,l,5,5,5,-hexafluoro-2,4-pen-tanedionato-0,0 )nickel [(H-COD)Ni(hfacac)] [103] - was therefore used in chloroaluminate ionic liquids. [Pg.247]

Obviously, there are many good reasons to study ionic liquids as alternative solvents in transition metal-catalyzed reactions. Besides the engineering advantage of their nonvolatile natures, the investigation of new biphasic reactions with an ionic catalyst phase is of special interest. The possibility of adjusting solubility properties by different cation/anion combinations permits systematic optimization of the biphasic reaction (with regard, for example, to product selectivity). Attractive options to improve selectivity in multiphase reactions derive from the preferential solubility of only one reactant in the catalyst solvent or from the in situ extraction of reaction intermediates from the catalyst layer. Moreover, the application of an ionic liquid catalyst layer permits a biphasic reaction mode in many cases where this would not be possible with water or polar organic solvents (due to incompatibility with the catalyst or problems with substrate solubility, for example). [Pg.252]

One particular feature of ionic liquids lies in their solvation properties, not only for hydrophobic compounds but also for hydrophilic compounds such as carbohydrates. Park and Kazlauskas reported the regioselective acylation of glucose in 99 % yield and with 93 % selectivity in [MOEMIM][BF4] (MOE = CH3OCH2CH2), values much higher than those obtained in the organic solvents commonly used for this purpose (Entry 18) [22] (Scheme 8.3-4). [Pg.344]

When ionic liquids are used as replacements for organic solvents in processes with nonvolatile products, downstream processing may become complicated. This may apply to many biotransformations in which the better selectivity of the biocatalyst is used to transform more complex molecules. In such cases, product isolation can be achieved by, for example, extraction with supercritical CO2 [50]. Recently, membrane processes such as pervaporation and nanofiltration have been used. The use of pervaporation for less volatile compounds such as phenylethanol has been reported by Crespo and co-workers [51]. We have developed a separation process based on nanofiltration [52, 53] which is especially well suited for isolation of nonvolatile compounds such as carbohydrates or charged compounds. It may also be used for easy recovery and/or purification of ionic liquids. [Pg.345]

Removal of diluent by an extraction process To obtain the final stable macroporous structure, the liquid organic diluents and the linear polymer are removed from the crosslinked structure by extraction with a good solvent for the inert diluents and particularly for the linear polymer. Toluene or methylene chloride are usually preferred for the removal of linear polystyrene from the divinylbenzene crosslinked macroporous polystyrene particles [125,128]. The extraction is carried out within a Soxhelet apparatus at the boiling point of the selected solvent over a period usually more than 24 h. [Pg.220]

Monensin, which is one of the natural antibiotics, selectively transports Na+ across an artificial liquid membrane (organic solvent) from the basic aqueous phase (IN) to the acidic aqueous phase (OUT), driven by the proton gradient8). (Fig. 1, 2)... [Pg.38]


See other pages where Liquid organic solvent selection is mentioned: [Pg.146]    [Pg.4]    [Pg.51]    [Pg.7]    [Pg.258]    [Pg.217]    [Pg.387]    [Pg.388]    [Pg.842]    [Pg.43]    [Pg.345]    [Pg.222]    [Pg.139]    [Pg.149]    [Pg.221]    [Pg.262]    [Pg.423]    [Pg.24]    [Pg.230]    [Pg.258]    [Pg.336]    [Pg.345]    [Pg.169]    [Pg.866]    [Pg.15]    [Pg.107]    [Pg.133]    [Pg.159]    [Pg.187]    [Pg.21]    [Pg.22]    [Pg.139]    [Pg.149]    [Pg.433]    [Pg.198]    [Pg.211]    [Pg.408]    [Pg.578]    [Pg.667]    [Pg.715]    [Pg.819]   
See also in sourсe #XX -- [ Pg.165 ]




SEARCH



Organic liquids

Organic selectivity

Selective solvent

Solvent liquids

Solvent selection

Solvent selectivity

Solvents selecting

© 2024 chempedia.info