Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid-gas bubble reactor

The fundamental principles of the gas-to-liquid mass transfer were concisely presented. The basic mass transfer mechanisms described in the three major mass transfer models the film theory, the penetration theory, and the surface renewal theory are of help in explaining the mass transport process between the gas phase and the liquid phase. Using these theories, the controlling factors of the mass transfer process can be identified and manipulated to improve the performance of the unit operations utilizing the gas-to-liquid mass transfer process. The relevant unit operations, namely gas absorption column, three-phase fluidized bed reactor, airlift reactor, liquid-gas bubble reactor, and trickled bed reactor were reviewed in this entry. [Pg.1173]

Many industrial processes which employ bubble column reactors (BCRs) operate on a continuous liquid flow basis. As a result these BCR s are a substantially more complicated than stationary flow systems. The design and operation of these systems is largely proprietary and there is, indeed a strong reliance upon scale up strategies [1]. With the implementation of Computational Fluid Dynamics (CFD), the associated complex flow phenomena may be anal)rzed to obtain a more comprehensive basis for reactor analysis and optimization. This study has examined the hydrodynamic characteristics of an annular 2-phase (liquid-gas) bubble column reactor operating co-and coimter-current (with respect to the gas flow) continuous modes. [Pg.669]

Gas-to-liquid mass transfer is a transport phenomenon that involves the transfer of a component (or multiple components) between gas and liquid phases. Gas-liquid contactors, such as gas-liquid absorption/ stripping columns, gas-liquid-solid fluidized beds, airlift reactors, gas bubble reactors, and trickle-bed reactors (TBRs) are frequently encountered in chemical industry. Gas-to-liquid mass transfer is also applied in environmental control systems, e.g., aeration in wastewater treatment where oxygen is transferred from air to water, trickle-bed filters, and scrubbers for the removal of volatile organic compounds. In addition, gas-to-liquid mass transfer is an important factor in gas-liquid emulsion polymerization, and the rate of polymerization could, thus, be enhanced significantly by mechanical agitation. [Pg.1163]

Evolving gas from viscous liquids in bubble reactors may give rise to viscous foams and entrainment that will limit the reaction rate, especidly on a larger scale. A spray column may be the first alternative (section 4.6.2.1). If cooling is also required effective measures are costly. For this purpose thin film evaporators (section 4.63.1) or scraped surface evaporators can be effective. For very viscous liquids one may consider batch kneaders or extruders with vapour ports. [Pg.172]

FIG. 23-25 Typ es of industrial gas/Hqiiid reactors, (a) Tray tower, (h) Packed, counter current, (c) Packed, parallel current, (d) Falling liquid film, (e) Spray tower, if) Bubble tower, (g) Venturi mixer, h) Static in line mixer, ( ) Tubular flow, (j) Stirred tank, (A,) Centrifugal pump, (/) Two-phase flow in horizontal tubes. [Pg.2105]

Bubble Reactors In bubble columns the gas is dispersed by nozzles or spargers without mechanical agitation. In order to improve the operation, redispersion at intei vals may be effected by static mixers, such as perforated plates. The liquid may be clear or be a slurry. [Pg.2115]

Recirculation of non-boiling liquids can be achieved by bubbling inert gas through the liquid in the reactor jacket. This is less practical for fluids with significant vapor pressure, because the jacket still must be under pressure, and a large condenser must be installed to condense the liquid from the vapor-saturated gas at the jacket temperature. It is more useful with molten metals and salts. For the design details of the reactor tube s inside, the same considerations apply as for a thermosiphon-controlled reactor. [Pg.41]

Gas-liquid contactors may be operated either by way of gas bubble dispersion into liquid or droplet dispersion in gas phase, while thin film reactors, i.e. packed columns and trickle beds are not suitable for solid formation due... [Pg.234]

In bubble-column slurry reactors, momentum is transferred to the liquid phase by the movement of gas bubbles. The liquid medium is stationary in most cases. Finely divided solids with particle diameters of the order of 0.01 mm are used. The operation is usually carried out in columns with high height-to-diameter ratios. The operation may be employed for batchwise conversion of a liquid reactant, or for continuous reaction between gaseous reactants. [Pg.80]

The interfacial area AtV usually excludes the contact area between the vapor space and the liquid at the top of the reactor. The justification for this is that most gas-liquid reactors have gas bubbles as a dispersed phase. This gives a much larger interfacial area than the nominal contact area at the top of the reactor. There are exceptions—e.g., polyester reactors where by-product water is removed only through the nominal interface at the top of the reactor— but these are old and inefficient designs. This nominal area scales as while the contact area with a dispersed phase can scale as S. [Pg.383]

In most cases the only appropriate approach to model multi-phase flows in micro reactors is to compute explicitly the time evolution of the gas/liquid or liquid/ liquid interface. For the motion of, e.g., a gas bubble in a surrounding liquid, this means that the position of the interface has to be determined as a function of time, including such effects as oscillations of the bubble. The corresponding transport phenomena are known as free surface flow and various numerical techniques for the computation of such flows have been developed in the past decades. Free surface flow simulations are computationally challenging and require special solution techniques which go beyond the standard CFD approaches discussed in Section 2.3. For this reason, the most common of these techniques will be briefly introduced in... [Pg.230]

Continuous reactor liquid mixed ideally, plug flow of gas (bubble gas column, tall reactors with multistirrer system)... [Pg.290]

The parameter p (= 7(5 ) in gas-liquid sy.stems plays the same role as V/Aex in catalytic reactions. This parameter amounts to 10-40 for a gas and liquid in film contact, and increases to lO -lO" for gas bubbles dispersed in a liquid. If the Hatta number (see section 5.4.3) is low (below I) this indicates a slow reaction, and high values of p (e.g. bubble columns) should be chosen. For instantaneous reactions Ha > 100, enhancement factor E = 10-50) a low p should be selected with a high degree of gas-phase turbulence. The sulphonation of aromatics with gaseous SO3 is an instantaneous reaction and is controlled by gas-phase mass transfer. In commercial thin-film sulphonators, the liquid reactant flows down as a thin film (low p) in contact with a highly turbulent gas stream (high ka). A thin-film reactor was chosen instead of a liquid droplet system due to the desire to remove heat generated in the liquid phase as a result of the exothermic reaction. Similar considerations are valid for liquid-liquid systems. Sometimes, practical considerations prevail over the decisions dictated from a transport-reaction analysis. Corrosive liquids should always be in the dispersed phase to reduce contact with the reactor walls. Hazardous liquids are usually dispensed to reduce their hold-up, i.e. their inventory inside the reactor. [Pg.388]

Stirred tank reactors are employed when it is necessary to handle gas bubbles, solids, or a second liquid suspended in a continuous liquid phase. One often finds that the rates of such reactions are strongly dependent on the degree of dispersion of the second phase, which in turn depends on the level of agitation. [Pg.251]

In a bubble-column reactor for a gas-liquid reaction, Figure 24.1(e), gas enters the bottom of the vessel, is dispersed as bubbles, and flows upward, countercurrent to the flow of liquid. We assume the gas bubbles are in PF and the liquid is in BMF, although nonideal flow models (Chapter 19) may be used as required. The fluids are not mechanically agitated. The design of the reactor for a specified performance requires, among other things, determination of the height and diameter. [Pg.608]

For gas-liquid systems at low mixer speeds, the gas may flow through the reaction liquid resulting in a small interfacial area. At higher mixing rates, the gas bubbles decrease in size, thus enlarging the interfacial area. An increase in gas flow (larger superficial velocity or gas load) may ultimately lead to flooding the reactor [202]. [Pg.131]

The dispersion of gas bubbles in a liquid is widely used in bubble column reactors and bioreactors. As shown in Figure 7.7, the gas is introduced by some kind of distributor at the bottom of the column. The liquid may be introduced at the bottom of the column and removed at the top, in which... [Pg.227]

Figure 11.33 Photographs of the gas dispersion in a 300 mL reactor. To be able to follow the dispersion visually the reactor was made of acrylic glass. The figure illustrates the influence of the stirrer speed on the distribution of gas in a liquid (rounds per minute indicated in the pictures). At higher stirrer speed the gas bubbles are smaller and well distributed over the whole reactor volume. Figure 11.33 Photographs of the gas dispersion in a 300 mL reactor. To be able to follow the dispersion visually the reactor was made of acrylic glass. The figure illustrates the influence of the stirrer speed on the distribution of gas in a liquid (rounds per minute indicated in the pictures). At higher stirrer speed the gas bubbles are smaller and well distributed over the whole reactor volume.
Figure 12-15 Sketch of concentration profiles between a spherical bubble and a solid spherical catalyst particle in a continuous liquid phase (upper) in a gas-liquid sluny reactor or between a bubble and a planar solid wall (lower) in a catalytic w bubble reactor, It is assmned that a reactant A must migrate from the bubble, tirough the drop, md to tiie solid catdyst smface to react. Concentration variations may occur because of mass transfer limitations around both bubble and solid phases. Figure 12-15 Sketch of concentration profiles between a spherical bubble and a solid spherical catalyst particle in a continuous liquid phase (upper) in a gas-liquid sluny reactor or between a bubble and a planar solid wall (lower) in a catalytic w bubble reactor, It is assmned that a reactant A must migrate from the bubble, tirough the drop, md to tiie solid catdyst smface to react. Concentration variations may occur because of mass transfer limitations around both bubble and solid phases.

See other pages where Liquid-gas bubble reactor is mentioned: [Pg.1166]    [Pg.1171]    [Pg.1171]    [Pg.1166]    [Pg.1171]    [Pg.1171]    [Pg.2115]    [Pg.39]    [Pg.28]    [Pg.400]    [Pg.403]    [Pg.539]    [Pg.28]    [Pg.329]    [Pg.300]    [Pg.393]    [Pg.17]    [Pg.264]    [Pg.611]    [Pg.619]    [Pg.133]    [Pg.141]    [Pg.579]    [Pg.601]    [Pg.614]    [Pg.1272]    [Pg.286]    [Pg.6]    [Pg.220]    [Pg.1108]    [Pg.233]    [Pg.191]   
See also in sourсe #XX -- [ Pg.1171 ]




SEARCH



Bubbling gas-liquid reactors

Bubbling gas-liquid reactors

Gas bubbling

Gas-liquid reactors

Gas-liquid slurry bubble column reactors

Liquid reactors

Models for the packed-bubble-column gas-liquid reactors

© 2024 chempedia.info