Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal liquefaction

A more complex reaction model was proposed from the results of a kinetic study of thermal liquefaction of subbituminous coal. Data were obtained over a temperature range of 673 to 743 K (752 to 878°F) at 13.8 MPa (2000 psia) by using two solvents, hydrogenated anthracene oil (HAO), and hydrogenated phenanthrene oil (HPO), at a coal-solvent ratio of 1 15. Results were correlated with the following model ... [Pg.2373]

Texaco gasification is based on a combination of two process steps, a liquefaction step and an entrained bed gasifier. In the liquefaction step the plastic waste is cracked under relatively mild thermal conditions. This depolymerisation results in a synthetic heavy oil and a gas fraction, which in part is condensable. The noncondensable fraction is used as a fuel in the process. The process is very comparable to the cracking of vacuum residues that originate from oil recycling processes. [Pg.5]

Polymers have inherently high hydrocarbon ratios, making liquefaction of waste plastics into liquid fuel feedstocks a potentially viable commercial process. The objective is to characterise the thermal degradation of polymers during hydrogenation. LDPE is studied due to its simple strueture. Isothermal and non-isothermal TGA were used to obtain degradation kinetics. Systems of homopolymer, polymer mixtures, and solvent-swollen polymer are studied. The significant variables for... [Pg.74]

Techniques for the chemical recycling of plastics into monomers and petrochemical feedstocks are described, including chemical and thermal depolymerisation, pyrolytic liquefaction, pyrolytic gasification and partial oxidation. BRITISH PETROLEUM CO.PLC... [Pg.93]

This paper discusses in depth advanced technologies for recycled materials from solid waste streams. Chemical depolymerisation, thermal depolymerisation, pyrolytic liquefaction, pyrolytic gasification, partial oxidation, and feedstock compatibility are all explained. The economic feasibility of the methods are considered. [Pg.104]

The second section of this volume describes several potentially new liquefaction processes which may have higher efficiencies than today s developing technologies. The theme of the Storch Award Symposium, featured throughout these six chapters, was new process potentials through the use of short-contact-time thermal processes followed by catalytic upgrading. [Pg.7]

Carbonaceous solids appear as a result of retrogressive reactions, in which organic thermal fragments recombine to produce insoluble semi-cokes (59,65). Coke formation is observed during liquefaction of all coals and its extent can vary widely according to the coal, the reaction solvent, and reaction conditions. The predominant inorganic species produced during the process of coal... [Pg.30]

A New Outlook on Coal Liquefaction Through Short-Contact-Time Thermal Reactions Factors Leading to High Reactivity... [Pg.134]

Conversion of coal to benzene or hexane soluble form has been shown to consist of a series of very fast reactions followed by slower reactions (2 3). The fast initial reactions have been proposed to involve only the thermal disruption of the coal structure to produce free radical fragments. Solvents which are present interact with these fragments to stabilize them through hydrogen donation. In fact, Wiser showed that there exists a strong similarity between coal pyrolysis and liquefaction (5). Recent studies by Petrakis have shown that suspensions of coals in various solvents when heated to 450°C produce large quantities of free radicals (. 1 molar solutions ) even when subsequently measured at room temperature. The radical concentration was significantly lower in H-donor solvents (Tetralin) then in non-donor solvents (naphthalene) (6). [Pg.134]

The significance of the above-described work is that in all of the presently developing coal liquefaction processes, the initial step in the conversion is thermal fragmentation of the coal structure to produce very fragile molecules which are highly functional, low in solubility, and extremely reactive toward dehydrogenation and char formation. A more detailed discussion of the chemical nature of these initial products has been presented elsewhere (4). ... [Pg.135]

The formation of these thermal fragments is necessary to catalytic liquefaction processes before the catalysts can become effective for hydrogen introduction, cracking and/or heteroatom removal (10). ... [Pg.135]

In catalytic coal liquefaction processes, reaction temperatures must be high in order to insure that thermal reactions disrupt the coal structure to the point that the catalyst can act on the products. [Pg.138]

To improve selectivity and conservation of hydrogen over present liquefaction technology in the conversion of coal to high quality liquids, we believe that thermal reactions should be kept as short as possible. Catalytic processes must be used for upgrading but should be used in a temperature regime which is optimal for such catalysts. [Pg.138]

It has been proposed (17) that the portion of coal which is mobile under liquefaction conditions, contributes to the stabilization of thermally-generated radicals. Thus, coals which are highly fluid or contain large contents of extractable material might be expected to provide hydrogen and thus promote conversion. Collins has reported that vitrinite is a better donor of hydrogen than is Tetralin (20). Our own measurements of the aromatic content and elemental analyses of the coals (16,21) (or coal products) before and after conversion at short time are insufficient to confirm or deny the supposition that coal acts as its own H-donor even at short times. [Pg.150]

If the initial reactions of coal are purely thermal, one might expect that the H-donor level will be of minor importance if times are kept short. In fact, all coals contain a certain portion of material that is extractable by pyridine. On heating coals to liquefaction temperatures, some additional material also becomes soluble in even non-donor solvents. Thus, there is a portion of all coals which can be solubilized with little dependence on the nature of the solvent. [Pg.158]

In Wilsonville Runs 143 and 147, thermal degradation of the coal-derived products greatly affected the SRC recovery on the Rerr-McGee CSD Unit. Both runs were made at identically the same operating conditions, except in Run 143, where presumably catalytically active solids were allowed to accumulate in the liquefaction reactor, whereas in Run 147 the solids were removed. The product yields exiting the reactor for both runs were very similar however, the thermal sensitivity of the... [Pg.207]

A question then arises as to whether the CSD recovery is being limited by the preasphaltene content produced from direct products of coal liquefaction or whether by low liquefaction severity a more thermally sensitive product is produced resulting in retrogressive reactions of liquefaction products to "post-asphaltenes." There is some indication that "virgin" preasphaltenes, primary products of coal dissolution, are more easily recovered via CSD as shown in Table VII however, "postasphaltenes" made from thermal regressive reactions are not. [Pg.210]

The fusible coals can give a high liquefaction yield if the high fluidity during the liquefaction is maintained by the liquefaction solvent to prevent the carbonization. The properties of the solvent required for the high yield with this kind of coal are miscibility, low viscosity, radical quenching reactivity and thermal stability not to be carbonized at the liquefaction temperature as reported in literatures (12). [Pg.265]

We have studied the thermal decomposition of diaryl ether in detail, since the cleavage of ether linkage must be one of the most responsible reactions for coal liquefaction among the various types of decomposition reaction and we found that the C-0 bond of polynucleus aromatic ethers is cleaved considerably at coal liquefaction temperature. [Pg.286]

The Thermal Decomposition of Aromatic Ethers. According to the results of Table I, the bond scission of oxygen containing polynucleus aromatic structure of coal at liquefaction temperature of 450°C seems to occur mainly at methylene or ether structures. Therefore, it will be very important to study the... [Pg.287]

The Effect of Mineral Matters on the Decomposition Ethers. Recently, the effect of mineral matters of coal on the coal liquefaction has received much attention. It was shown that small amounts of FeS or pyrite are responsible for the hydro-genative liquefaction of coal. Therefore, it is interesting to elucidate the effect of mineral matters of coal on the decomposition rate and products of aromatic ethers, and so three diaryl ethers were thermally treated in the presence of coal ash obtained by low temperature combustion of Illinois No.6 coal at about 200°C with ozone containing oxygen. [Pg.293]

A number of basic studies in the area of donor solvent liquefaction have been reported (2 -9). Franz (10J reported on the interaction of a subbituminous coal with deuterium-labelled tetra-lin, Cronauer, et al. (11) examined the interaction of deuterium-labelled Tetralin with coal model compounds and Benjamin, et al. (12) examined the pyrolysis of Tetralin-l-13C and the formation of tetralin from naphthalene with and without vitrinite and hydrogen. Other related studies have been conducted on the thermal stability of Tetralin, 1,2-dihydronaphthalene, cis-oecalin and 2-methylin-dene (13,14). [Pg.339]

The liquefaction process is initiated by the thermal generation of coal-derived free radicals which in turn react with solvent to form solvent radicals by hydrogen abstraction. These sol-... [Pg.341]

Fundamental studies of coal liquefaction have shown that the structure of solvent molecules can determine the nature of liquid yields that result at any particular set of reaction conditions. One approach to understanding coal liquefaction chemistry is to use well-defined solvents or to study reactions of solvents with pure compounds which may represent bond-types that are likely present in coal [1,2]. It is postulated that one of the major routes in coal liquefaction is initiation by thermal activation to form free radicals which abstract hydrogen from any readily available source. The solvent may, therefore, function as a direct source of hydrogen (donor), indirect source of hydrogen (hydrogen-transfer agent), or may directly react with the coal (adduction). The actual role of solvent thus becomes a significant parameter. [Pg.362]

Chynoweth, D. P., and Tarman, P. B., Hybrid bio-thermal liquefaction. Patent No. US4334026., 1982 June 08. [Pg.226]

It is to be noted that the difference in dissipation of energy between the thermal energy demanded by organic chemical hydrides and the mechanical energy by compression or liquefaction of hydrogen is quite significant because the former is supplied as waste heat, whereas the latter is lost at the site of hydrogen utilization for fuel cells or ICEs. [Pg.467]

Different structural materials have different thermal contraction coefficients, meaning that accommodations should be made for their different dimensions at cryogenic temperatures. If not, problems associated with safety (e.g., leaks) may arise. Generally, the contraction of most metals from room temperature (300 K) to a temperature close to the liquefaction temperature of hydrogen (20 K) is <1%, whereas the contraction for most common structural plastics is from 1% to 2.5% [23]. [Pg.542]

Pyrolysis and liquefaction processes take an intermediate position in the sense that they maintain some larger molecular characteristics. Pyrolysis is a process in which the biomass material is quickly heated. The thermal cracking process, de-polymerizes waste or dry biomass and produces a liquid of complex composition (Fig. 1.17). [Pg.20]


See other pages where Thermal liquefaction is mentioned: [Pg.1541]    [Pg.372]    [Pg.13]    [Pg.26]    [Pg.179]    [Pg.207]    [Pg.213]    [Pg.306]    [Pg.322]    [Pg.328]    [Pg.335]    [Pg.200]    [Pg.332]    [Pg.26]    [Pg.467]    [Pg.54]    [Pg.50]    [Pg.335]    [Pg.279]    [Pg.520]   


SEARCH



Liquefaction studies, thermal

Liquefaction thermal conductivity

Thermal liquefaction processes

Thermal reactions, coal liquefaction

© 2024 chempedia.info