Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipoxygenase acids

Most of the drugs such as epinephrine and albuterol used to treat asthma attacks are bronchodilators—substances that expand the bronchial passages Newer drugs are designed to either inhibit the enzyme 5 lipoxygenase which acts on arachidomc acid m the first stage of leukotriene biosynthesis or to block leukotriene receptors... [Pg.1082]

Lipostabil Lipoteichoic acid b-lipotropic hormone b-Lipotropin [12584-99-5] Lipoadase Lipoadases 5-lipoxygenase Lipoxygenase... [Pg.570]

Lipoxygenase-Catalyzed Oxidations. Lipoxygenase-1 catalyzes the incorporation of dioxygen into polyunsaturated fatty acids possessing a l(Z),4(Z)-pentadienyi moiety to yield ( ),(Z)-conjugated hydroperoxides. A highly active preparation of the enzyme from soybean is commercially available in purified form. From a practical standpoint it is important to mention that the substrate does not need to be in solution to undergo the oxidation. Indeed, the treatment of 28 g/L of linoleic acid [60-33-3] with 2 mg of the enzyme results in (135)-hydroperoxide of linoleic acid in 80% yield... [Pg.349]

The wide applicability of the PK reaction is apparent in the synthesis of pyrroles, for example, 45, en route to novel chiral guanidine bases, levuglandin-derived pyrrole 46, lipoxygenase inhibitor precursors such as 47, pyrrole-containing zirconium complexesand iV-aminopyrroles 48 from 1,4-dicarbonyl compounds and hydrazine derivatives. The latter study also utilized Yb(OTf)3 and acetic acid as pyrrole-forming catalysts, in addition to pyridinium p-toluenesulfonate (PPTS). [Pg.85]

Compounds 111 having structural features of the dual cyclooxygenase (COX)/5-lipooxygenase (5-LO) inhibitor tepoxalin and the 5-LO inhibitor ABT-761 were prepared. Many of these hybrid compounds are potent COX and 5-LO inhibitors two compounds (111, r =McO, R = R" = R = H, R = NH2, R = Me and r = MeO, R = R = Me, R" = R = H, R = Cl) inhibited eicosanoid biosynthesis in an ex vivo assay, but neither improved on the main deficiency of tepoxalin, duration of 5-LO inhibitory activity (99BMCL979). Compounds 111 inhibit the production of arachidonic acid products associated with 5-lipoxygenase and cyclooxygenase and are useful in the treatment of inflammatory disorders (99USP5925769). [Pg.85]

Any of the collection of oxygenated metabolites of arachidonic acid that are the product of cyclooxygenase, cytochrome P450, or lipoxygenase pathways. [Pg.457]

Lipoprotein Metabolism Lipoproteins Liposomes 5-Lipoxygenase Lipoxygenases Lithocholic Acid Local Anaesthetics Locus... [Pg.1496]

Applications of peroxide formation are underrepresented in chiral synthetic chemistry, most likely owing to the limited stability of such intermediates. Lipoxygenases, as prototype biocatalysts for such reactions, display rather limited substrate specificity. However, interesting functionalizations at allylic positions of unsaturated fatty acids can be realized in high regio- and stereoselectivity, when the enzymatic oxidation is coupled to a chemical or enzymatic reduction process. While early work focused on derivatives of arachidonic acid chemical modifications to the carboxylate moiety are possible, provided that a sufficiently hydrophilic functionality remained. By means of this strategy, chiral diendiols are accessible after hydroperoxide reduction (Scheme 9.12) [103,104]. [Pg.241]

Scheme 9.12 Soybean lipoxygenase (SBLO)-mediated oxygenation of fatty acid derivatives. Scheme 9.12 Soybean lipoxygenase (SBLO)-mediated oxygenation of fatty acid derivatives.
There are three groups of eicosanoids that are synthesized from C20 eicosanoic acids derived from the essential fatty acids linoleate and a-linolenate, or directly from dietary arachidonate and eicosapentaenoate (Figure 23-5). Arachidonate, usually derived from the 2 position of phospholipids in the plasma membrane by the action of phospholipase Aj (Figure 24-6)—but also from the diet—is the substrate for the synthesis of the PG2, 1X2 series (prostanoids) by the cyclooxygenase pathway, or the LT4 and LX4 series by the lipoxygenase pathway, with the two pathways competing for the arachidonate substrate (Figure 23-5). [Pg.192]

Williams, JH and Bliss, TV (1989) An in vitro study of the effect of lipoxygenase and cyclooxygenase inhibitors of arachidonic acid on the induction and maintenance of long-term potentiation in the hippocampus. Neurosci. Lett. 107 301-309. [Pg.286]

The biological membranes that surround cells and form the boundaries of intracellular organelles contain polyunsaturated fiitty acids, which are susceptible to oxidation. This reaction is used under controlled conditions by enzymes, such as the lipoxygenases or cyclooxygenases, within cells to produce oxygenated lipids, which can act as mediators of inflammation (Smith and Marnett, 1991 Yamamoto, 1992). Such compounds are characterized by their high potency and specificity in their interaction with cells (Salmon, 1986). While these enzymatic reactions... [Pg.23]

Lipoxygenases catalyse the regio-specific and stereoselective oxygenation of unsaturated fatty acids. The mammalian enzymes have been detected in human platelets, lung, kidney, testes and white blood cells. The leukotrienes, derived from the enzymatic action of the enzyme on arachidonic acid, have effects on neutrophil migration and aggregation, release of lysosomal enzymes, capillary permeability, induction of pain and smooth muscle contraction (Salmon, 1986). [Pg.25]

An example of an experiment in which LDL has been treated with 15-lipoxygenase and the oxidation monitored by the formation of conjugated diene is shown in Fig. 2.2. In the absence of transition metal, a rapid increase in absorbance occurs, with no lag phase, which ceases after a period of about 90 min under these conditions. If copper is added to promote LDL oxidation at this point, LDL treated with lipoxygenase oxidizes at a faster rate with a short lag phase when compared to the control. During this procedure there is only a minimal loss of a-tocopherol and so we may ascribe the shortened lag phase to the increase in lipid peroxides brought about by lipoxygenase treatment. A similar result was found when LDL was supplemented with preformed fatty acid hydroperoxides (O Leary eta/., 1992). [Pg.31]

Chamirlitrat, W. and Mason, KP. (1989). Lipid preroxyl radical intermediates in the peroxidation of polyunsaturated fatty acids by lipoxygenase. J. Biol. Chem. 264, 20968—20973. [Pg.34]

Garssen, G.J., Vliegenthart, J.F.G. and Boldingh, J. (1972). The origin and structures of dimeric fetty acids from the anaerobic reaction between soya-bean lipoxygenase, linoleic acid and its hydroperoxide. Biochem. J. 130, 435-442. [Pg.35]

Sekiya, J. Aoshima, H., Kajiwara, T., Togo, T. and Hatanaka, A. (1977). Purification and some properties of potato tuber lipoxygenase and detection of linoleic acid radical in the enzyme reaction. Agric. Biol. Chem. 41, 827-832. [Pg.36]

Mechanisms of lipid peroxidation that have been implicated in atherosclerosis may be pertinent to RA. Cellular lipoxygenase enzymes may promote LDL modification by inserting hydroperoxide groups into unsaturated fetty-acid side chains of the LDL complex (Yla-Herttuala etal., 1990). 15-Lipoxygenase has been implicated as an initiator of LDL oxidation (Cathcart etal., 1991) whilst 5-lipoxygenase does not appear to be involved (Jessup et al., 1991). Products of activated lipoxygenase enzymes within inflammatory synovial fluid surest that this pathway could be activated in RA (Costello etal., 1992). [Pg.106]

Payne, A.N., Garland, L.G., Lees, I.W. and Salmon, J.A. (1988). Selective inhibition of arachidonate 5-lipoxygenase by novel acetohydroxamic acids effects on bronchial anaphylaxis in anaesthetised guinea-pigs. Br. J. Pharmacol. 94, 540-546. [Pg.230]

Payne, A.N., Jackson, W.P., Salmon, J.A., Nicholls, A., Yeadon, M. and Garland, L.G. (1991). Hydroxamic acids and hydroxyureas as novel, selective 5-lipoxygenase inhibitors for possible use in asthma. Agents Actions 34, 189-199. [Pg.230]

Fe-TPAA Fe(III)-tris[N-(2-pyridylmethyl)-2-aminoethyl] amine Fe-TPEN Fe(II)-tetrakis-N,N,N, N -(2-pyridyl methyl-2-aminoethyl)amine FFA Free fatty acids FGF Fibroblast growth factor FID Flame ionization detector FITC Fluorescein isothiocyanate FKBP FK506-binding protein FLAP 5-lipoxygenase-activating protein... [Pg.282]


See other pages where Lipoxygenase acids is mentioned: [Pg.1082]    [Pg.345]    [Pg.1082]    [Pg.685]    [Pg.700]    [Pg.257]    [Pg.112]    [Pg.194]    [Pg.456]    [Pg.307]    [Pg.25]    [Pg.25]    [Pg.25]    [Pg.26]    [Pg.30]    [Pg.33]    [Pg.40]    [Pg.45]    [Pg.45]    [Pg.76]    [Pg.90]    [Pg.138]    [Pg.219]    [Pg.222]    [Pg.232]    [Pg.270]    [Pg.270]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Amino acid derivatives lipoxygenase

Arachidonic acid lipoxygenase metabolites

Arachidonic acid metabolites lipoxygenases

Fatty acids lipoxygenase catalyzing oxidation

Fatty acids lipoxygenase enzymes

Fatty acids lipoxygenase pathway

Hydroperoxidation of Linoleic Acid Catalysed by Soybean Lipoxygenase

Hydroxy-eicosanoic acids biosynthesis of by 5-lipoxygenase

Lipoxygenase

Lipoxygenase Lipoxygenases

Lipoxygenase amino acid sequence

Lipoxygenase, hydroperoxidation fatty acids

Lipoxygenases

Plant Lipoxygenases and Jasmonic Acid

© 2024 chempedia.info