Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipoprotein lipases receptors

Figure 25-5. Metabolism of high-density lipoprotein (HDL) in reverse cholesteroi transport. (LCAT, lecithinxholesterol acyltransferase C, cholesterol CE, cholesteryl ester PL, phospholipid A-l, apolipoprotein A-l SR-Bl, scavenger receptor B1 ABC-1, ATP binding cassette transporter 1.) Prep-HDL, HDLj, HDL3—see Table 25-1. Surplus surface constituents from the action of lipoprotein lipase on chylomicrons and VLDL are another source of preP-HDL. Hepatic lipase activity is increased by androgens and decreased by estrogens, which may account for higher concentrations of plasma HDLj in women. Figure 25-5. Metabolism of high-density lipoprotein (HDL) in reverse cholesteroi transport. (LCAT, lecithinxholesterol acyltransferase C, cholesterol CE, cholesteryl ester PL, phospholipid A-l, apolipoprotein A-l SR-Bl, scavenger receptor B1 ABC-1, ATP binding cassette transporter 1.) Prep-HDL, HDLj, HDL3—see Table 25-1. Surplus surface constituents from the action of lipoprotein lipase on chylomicrons and VLDL are another source of preP-HDL. Hepatic lipase activity is increased by androgens and decreased by estrogens, which may account for higher concentrations of plasma HDLj in women.
FIGURE 3.2.2 Metabolic pathways of carotenoids such as p-carotene. CM = chylomicrons. VLDL = very low-density lipoproteins. LDL = low-density lipoproteins. HDL = high-density lipoproteins. BCO = p-carotene 15,15 -oxygenase. BCO2 = p-carotene 9, 10 -oxygenase. LPL = lipoprotein lipase. RBP = retinol binding protein. SR-BI = scavenger receptor class B, type I. [Pg.162]

FIGURE 9. Endogenous lipoprotein metabolism. In liver cells, cholesterol and triglycerides are packaged into VLDL particles and exported into blood where VLDL is converted to IDL. Intermediate-density lipoprotein can be either cleared by hepatic LDL receptors or further metabolized to LDL. LDL can be cleared by hepatic LDL receptors or can enter the arterial wall, contributing to atherosclerosis. Acetyl CoA, acetyl coenzyme A Apo, apolipoprotein C, cholesterol CE, cholesterol ester FA, fatty acid HL, hepatic lipase HMG CoA, 3-hydroxy-3-methyglutaryl coenzyme A IDL, intermediate-density lipoprotein LCAT, lecithin-cholesterol acyltransferase LDL, low-density lipoprotein LPL, lipoprotein lipase VLDL, very low-density lipoprotein. [Pg.178]

ApoC-I is expressed mainly in liver but also in lung, skin, testis, spleen, neural retina, and RPE. Its multiple functions include the activation of lecithin cholesterol acyltransferase (LCAT) and the inhibition, among others, of lipoprotein and hepatic lipases that hydrolyze triglycerides in particle cores. Notably, both LCAT and lipoprotein lipases are expressed in RPE and choroid (Li et al., 2006). Moreover ApoC-I has been shown to displace ApoE on the VLDL and LDL and thus hinder their binding and uptake via their corresponding receptors (Li et al., 2006). [Pg.319]

In capillaries of adipose tissue (and muscle), apoC-II activates lipoprotein lipase, the fetty adds released enter the tissue for storage, and the glycerol is retrieved by the liver, which has glycerol kinase. The chylomicron remnant is picked up by hepatocytes through the apoE receptor thus, dietary cholesterol, as well as any remaining triglyceride, is released in the hepatocyte. [Pg.214]

Type I Lipoprotein lipase deficiency (triglycerides) Type lla LDL (BlOO) receptor deficiency (cholesterol)... [Pg.221]

Answer A. These are the clinical features of lipoprotein lipase deficiency (Type I lipopro-teinemia). LDL receptor defects would result in elevated LDLs. HMG-CoA reductase and ApoB-100 have no direct relationship to chylomicrons. ApoB-48 deficiency would result in decreased production of chylomicrons. [Pg.224]

The best-known effect of APOE is the regulation of lipid metabolism (see Fig. 10.13). APOE is a constituent of TG-rich chylomicrons, VLDL particles and their remnants, and a subclass of HDL. In addition to its role in the transport of cholesterol and the metabolism of lipoprotein particles, APOE can be involved in many other physiological and pathological processes, including immunoregu-lation, nerve regeneration, activation of lipolytic enzymes (hepatic lipase, lipoprotein lipase, lecithin cholesterol acyltransferase), ligand for several cell receptors, neuronal homeostasis, and tissue repair (488,490). APOE is essential... [Pg.295]

VLDLs, IDLs, and LDLs are closely related to one another. VLDLs formed in the liver (see p. 312) transport triacylglycerols, cholesterol, and phospholipids to other tissues. Like chylomicrons, they are gradually converted into IDL and LDL under the influence of lipoprotein lipase [1]. This process is also stimulated by HDL. Cells that have a demand for cholesterol bind LDL through an interaction between their LDL receptor and ApoB-100, and then take up the complete particle through receptor-mediated endocytosis. This type of transport is mediated by depressions in the membrane ( coated pits"), the interior of which is lined with the protein clathrin. After LDL binding, clathrin promotes invagination of the pits and pinching off of vesicles ( coated vesicles"). The clathrin then dissociates off and is reused. After fusion of the vesicle with ly-sosomes, the LDL particles are broken down (see p. 234), and cholesterol and other lipids are used by the cells. [Pg.278]

Partial summary of lipoprotein metabolism in humans. I to VII are sites of action of hypolipidemic drugs. I, stimulation of bile acid and/or cholesterol fecal excretion II, stimulation of lipoprotein lipase activity III, inhibition of VLDL production and secretion IV, inhibition of cholesterol biosynthesis V, stimulation of cholesterol secretion into bile fluid VI, stimulation of cholesterol conversion to bile acids VII, increased plasma clearance of LDL due either to increased LDL receptor activity or altered lipoprotein composition. CHOL, cholesterol IDL, intermediate-density lipoprotein. [Pg.270]

Triglycerides are removed in extrahepatic tissues through a pathway shared with VLDL that involves hydrolysis by the lipoprotein lipase (LPL) system. Decrease in particle diameter occurs as triglycerides are depleted. Surface lipids and small apoproteins are transferred to HDL. The resultant chylomicron remnants are taken up by receptor-mediated endocytosis into hepatocytes. [Pg.777]

Hepatic and peripheral effects of fibrates. These effects are mediated by activation of peroxisome proliferator-activated receptor-a, which modulates the expression of several proteins. LPL, lipoprotein lipase VLDL, very-low-density lipoproteins. [Pg.789]

Fig. 5.2.1 The major metabolic pathways of the lipoprotein metabolism are shown. Chylomicrons (Chylo) are secreted from the intestine and are metabolized by lipoprotein lipase (LPL) before the remnants are taken up by the liver. The liver secretes very-low-density lipoproteins (VLDL) to distribute lipids to the periphery. These VLDL are hydrolyzed by LPL and hepatic lipase (HL) to result in intermediate-density lipoproteins (IDL) and low-density lipoproteins (LDL), respectively, which then is cleared from the blood by the LDL receptor (LDLR). The liver and the intestine secrete apolipoprotein AI, which forms pre-jS-high-density lipoproteins (pre-jl-HDL) in blood. These pre-/ -HDL accept phospholipids and cholesterol from hepatic and peripheral cells through the activity of the ATP binding cassette transporter Al. Subsequent cholesterol esterification by lecithinxholesterol acyltransferase (LCAT) and transfer of phospholipids by phospholipid transfer protein (PLTP) transform the nascent discoidal high-density lipoproteins (HDL disc) into a spherical particle and increase the size to HDL2. For the elimination of cholesterol from HDL, two possible pathways exist (1) direct hepatic uptake of lipids through scavenger receptor B1 (SR-BI) and HL, and (2) cholesteryl ester transfer protein (CfiTP)-mediated transfer of cholesterol-esters from HDL2 to chylomicrons, and VLDL and hepatic uptake of the lipids via the LDLR pathway... Fig. 5.2.1 The major metabolic pathways of the lipoprotein metabolism are shown. Chylomicrons (Chylo) are secreted from the intestine and are metabolized by lipoprotein lipase (LPL) before the remnants are taken up by the liver. The liver secretes very-low-density lipoproteins (VLDL) to distribute lipids to the periphery. These VLDL are hydrolyzed by LPL and hepatic lipase (HL) to result in intermediate-density lipoproteins (IDL) and low-density lipoproteins (LDL), respectively, which then is cleared from the blood by the LDL receptor (LDLR). The liver and the intestine secrete apolipoprotein AI, which forms pre-jS-high-density lipoproteins (pre-jl-HDL) in blood. These pre-/ -HDL accept phospholipids and cholesterol from hepatic and peripheral cells through the activity of the ATP binding cassette transporter Al. Subsequent cholesterol esterification by lecithinxholesterol acyltransferase (LCAT) and transfer of phospholipids by phospholipid transfer protein (PLTP) transform the nascent discoidal high-density lipoproteins (HDL disc) into a spherical particle and increase the size to HDL2. For the elimination of cholesterol from HDL, two possible pathways exist (1) direct hepatic uptake of lipids through scavenger receptor B1 (SR-BI) and HL, and (2) cholesteryl ester transfer protein (CfiTP)-mediated transfer of cholesterol-esters from HDL2 to chylomicrons, and VLDL and hepatic uptake of the lipids via the LDLR pathway...
Modification of nascent chylomicron particles The particle released by the intestinal mucosal cell is called a "nascent" chylomicron because it is functionally incomplete. When it reaches the plasma, the particle is rapidly modified, receiving apo E (which is recognized by hepatic receptors) and C apolipoproteins, The latter include apo C-ll, which is necessary for the activation of lipoprotein lipase, the enzyme that degrades the triacylglycerol contained in the chylomicron (see below). The source of these apolipoproteins is circulating HDL (see Figure 18.16). [Pg.226]

HDL is a reservoir of apolipoproteins HDL particles serve as a circulating reservoir of apo C-ll (the apolipoprotein that is transferred to VLDL and chylomicrons, and is an activator of lipoprotein lipase), and apo E (the apolipoprotein required for the receptor-mediated endocytosis of IDLs and chylomicron remnants). [Pg.232]

Each apolipoprotein has one or more distinct functions. The apoB proteins probably stabilize the lipoprotein micelles. In addition, apoB-100 is essential to recognition of LDL by its receptors. The 79-residue apoC-II has a specific function of activating the lipoprotein lipase that hydrolyses the triacylglycerols of chylomicrons and VLDL. Lack of either C-II or the lipase results in a very high level of triacylglycerols in the blood.11... [Pg.1182]

TNF-a is identical to cachetin, a protein that suppresses completely the lipoprotein lipase of adipose tissue and is believed to be responsible for cachexia, a condition of general ill health, malnutrition, weight loss, and wasting of muscle that accompanies cancer and other chronic diseases. Nevertheless, TNF-a may be overproduced in obesity as well. It has been suggested that abnormal production of TNF-a may induce cachexia while abnormal action of the cytokine may cause obesity.233 Some TNF receptors have "death domains" and trigger apoptosis, while other receptors promote proliferation and differentiation via transcription factor NF-kB.242... [Pg.1849]

LRP is a member of the LDL receptor gene family (ref. 649) and, like the LDL receptor, performs an essential role in the removal of certain lipoprotein particles from the bloodstream. As Heeren et al. (ref. 650) explain, triglycerides are transported mainly by two distinct classes of lipoproteins, the chylomicrons and the very-low-density lipoproteins (VLDL). After assembly in the intestine, chylomicrons are carried via lymph into the bloodstream, where they are transformed at the endothelial surface to remnant lipoproteins through the catalytic action of lipoprotein lipase (for review, see ref. 651,652). After lipolysis, the lipoprotein lipase remains associated with the chylomicron remnants and, in conjunction with apolipoprotein E (apo E) (ref. 653-655), facilitates their clearance by the liver into hepatocytes (ref. 656) via LDL receptors and the LRP (ref. 657-660). (The essential role for both receptors in chylomicron remnant removal in vivo has been demonstrated in gene knockout and gene transfer experiments (ref. 661,662 for review, see ref. 663).)... [Pg.246]


See other pages where Lipoprotein lipases receptors is mentioned: [Pg.479]    [Pg.479]    [Pg.845]    [Pg.228]    [Pg.495]    [Pg.502]    [Pg.696]    [Pg.943]    [Pg.208]    [Pg.229]    [Pg.559]    [Pg.268]    [Pg.132]    [Pg.186]    [Pg.76]    [Pg.129]    [Pg.401]    [Pg.274]    [Pg.21]    [Pg.123]    [Pg.120]    [Pg.167]    [Pg.778]    [Pg.792]    [Pg.82]    [Pg.127]    [Pg.497]    [Pg.822]    [Pg.228]    [Pg.240]    [Pg.481]    [Pg.535]    [Pg.142]   
See also in sourсe #XX -- [ Pg.538 , Pg.543 ]




SEARCH



Lipoprotein lipase

Lipoprotein receptors

© 2024 chempedia.info