Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linearity excipients

Figure 4.50. Cumulative dissolution results. Two experimental tablet formulations were tested against each other in a dissolution test in which tablets are immersed in a stirred aqueous medium (number of tablets, constructional details and operation of apparatus, and amount of medium are givens). Eighty or more percent of the drug in either formulation is set free within 10 minutes. The slow terminal release displayed by formulation B could point towards an unwanted drug/excipient interaction. The vertical bars indicate ymean - with Sy 3%. A simple linear/exponential model was used to approximate the data for the strength 2 formulation. Strengths I and 3 are not depicted but look very similar. Figure 4.50. Cumulative dissolution results. Two experimental tablet formulations were tested against each other in a dissolution test in which tablets are immersed in a stirred aqueous medium (number of tablets, constructional details and operation of apparatus, and amount of medium are givens). Eighty or more percent of the drug in either formulation is set free within 10 minutes. The slow terminal release displayed by formulation B could point towards an unwanted drug/excipient interaction. The vertical bars indicate ymean - with Sy 3%. A simple linear/exponential model was used to approximate the data for the strength 2 formulation. Strengths I and 3 are not depicted but look very similar.
The sample temperature is increased in a linear fashion, while the property in question is evaluated on a continuous basis. These methods are used to characterize compound purity, polymorphism, solvation, degradation, and excipient compatibility [41], Thermal analysis methods are normally used to monitor endothermic processes (melting, boiling, sublimation, vaporization, desolvation, solid-solid phase transitions, and chemical degradation) as well as exothermic processes (crystallization and oxidative decomposition). Thermal methods can be extremely useful in preformulation studies, since the carefully planned studies can be used to indicate the existence of possible drug-excipient interactions in a prototype formulation [7]. [Pg.17]

Surface area and moisture uptake have been related to the disintegration properties of excipients such as crosspovidone, starch, and alginic acid [17]. The surface areas of the three materials were measured, and a linear correlation was found between the maximum moisture sorption and specific surface area for the three disintegrants. The greater the surface area of the material, the more numerous were the sites for capillary attraction of water to its surface. It was postulated that the capillary action appears to be responsible for the disintegration properties of the materials. [Pg.262]

A linearization of the steady-state concentration gradient could be demonstrated by relating the depth to the weight of the tissue, removed per piece of adhesive tape. However, large errors, especially, within the first tapes, cast doubt over these findings [127, 128], The procedure is time-consuming and artifacts, due to absorption and desorption of moisture, formulation excipients, or sebaceous lipids, are likely. [Pg.18]

The Committee for Proprietary Medicinal Products [8] applied the BCS, with certain requirements, to dispense with bioequivalency tests if the active pharmaceutical ingredient is class I and the in vitro dissolution of the finished dosage form is fast [9], An active substance is considered highly soluble if the amount contained in the HDS of an IR product is dissolved in 250 ml of each of three buffers within the range of pH 1-8 at 37°C (e.g., pH 1.0, 4.6, and 6.8). There should be linear and complete absorption, which indicates HP to reduce the possibility of an IR dosage form influencing the bioavailability [8], The similarity of the dissolution profiles of the test and reference products is demonstrated in each of three buffers within the range of pH 1-8 at 37°C (e.g., pH 1.0,4.6, and 6.8). If there is rapid dissolution of the product, where at least 85% of the active substance is dissolved within 15 min, no further comparison of the test and reference is required. Further requirements include that excipients be well established and have no interaction with the pharmacokinetics of the active substance and that the method of manufacture of finished product... [Pg.668]

In some cases, sample preparation for CZE requires only the dilution of the sample, mostly to accommodate detection (for signal and linearity of response). However, as was previously mentioned, sample characteristics such as viscosity, buffer composition (pH and excipients), and salt content can especially affect electrophoretic injection and performance. [Pg.178]

A.J.O Neil, R. Jee and A.C. Moffat, The application of mnltiple linear regression to the measnrement of the median particle size of drugs and pharmacentical excipients by near-infrared spectroscopy. Analyst, 123, 2297-2302 (1998). [Pg.457]

In addition to facilitating the transfer of water, intimate contact between drugs and excipients can lead to the formation of eutectic mixtures and subsequent degradation. Mroso et al. [45] reported on mixtures of acetylsahcylic acid and alkali stearates. They demonstrated that there was a linear relationship between... [Pg.29]

The batch size ranged from 3.75 up to 60 kg. To obtain precise scale-up measurements, the excipients which were used belonged to identical lots of primary material [10% (W/W) corn starch, 4% (W/W) polyvinylpyrrolidone as binder, and 86% (W/W) lactose]. As can be seen from Figure 4, the amount of granulating liquid is linearly dependent on the batch size. During the scale-up exercise, the rate of addition of the granulation liquid was enhanced in proportion to the larger batch size. Thus the power profile, which was plotted... [Pg.205]

Experimental Requirements. Solutions of known concentrations are used to determine the linearity. A plot of peak area versus concentration (in percent related substance) is used to demonstrate the linearity. Authentic samples of related substances with known purity are used to prepare these solutions. In most cases, for the linearity of a drug product, spiking the related substance authentic sample into excipients is not necessary, as the matrix effect should be investigated in method accuracy. [Pg.39]

Oguchi and coworkers examined the decarboxylation behavior of -aminosalicylic acid (PAS) as a freeze-dried solid under thermal stress conditions (80°C) in the presence of the excipients pullulan (a linear polysaccharide which can not form inclusion complexes with PAS) and a-cyclodextrin (39). The solid-state stability was shown to correlate with the fraction of amorphous PAS. Increasing relative amounts of pullulan resulted in higher fractions of amorphous PAS. Rapid freezing (liquid nitrogen) was shown to result in a greater relative amount of amorphous drug, as expected. [Pg.287]

Murakami et al. [82] developed and validated a sensitive HPLC technique to quantify omeprazole in delayed release tablets. The analysis was carried out using a RP-Cig column with UV-VIS detection at 280 nm. The mobile phase was diluted with phosphate buffer (pH 7.4) and acetonitrile (70 30) at a flow-rate of 1.5 ml/min. The parameters used in the validation process were linearity, range, quantification limit, accuracy, specificity, and precision. The retention time of omeprazole was about 5 min with symmetrical peaks. The linearity in the range of 10-30 ng/ml presented a correlation coefficient of 0.9995. The excipients in the formulation did not interfere with the analysis and the recovery was quantitative. Results were satisfactory and the method proved to be adequate for quality control of omeprazole delayed-release tablets. [Pg.222]

As shown in Table 6.17, the hardness—compression force profile for Drug A tablets is linear across the range of compression forces studied. This linear profile is attributed to the properties inherent in the brittle and ductile excipients chosen for this formulation. In contrast, the hardness—compression force profile for Drug B shows a plateau in tablet hardness at higher compression forces (> 11 kN), as listed in Table 6.18. [Pg.151]

The same authors also applied capillary electrophoresis to the study of benazepril hydrochloride and several angiotensin-converting enzyme inhibitors [43]. Separation of the compounds was performed by means of two phosphate buffers (each 0.1 M) at pH 7 and 6.25, respectively [42], Due to the highest selectivity of the first mentioned running buffer, the same system has been applied for the quantification of benazepril and other compounds in their corresponding pharmaceutical formulations. It was found that the possibility of simultaneous identification and quantification of the active ingredient in the finished products was especially attractive, and that excipients do not adversely affect the results. This article deals with the validation of some parameters of the quantitative analysis, namely linearity, precision, accuracy, and robustness [43],... [Pg.157]

In addition, when the obtained drug percolation thresholds were plotted as a function of the drug-excipient particle size ratio of the matrices (see Figure 25), a linear relationship was found between the drug percolation threshold and the relative drug particle size [46]. These results are in agreement with the above exposed theoretical model based on percolation theory. [Pg.1015]

The Effective Medium Approximation (EMA), based in some assumptions, allows us to employ linear regressions as an approximation of the behavior of a disordered system outside the critical range. Based on EMA theory, two linear regressions have been performed as an approximation for estimating the percolation threshold as the point of intersection between both regression lines (see Figures 43 15). The values of the excipient percolation thresholds estimated for all the batches studied, based on the behavior of the kinetic parameters, ranged from 25.99 to 26.77%. [Pg.1041]


See other pages where Linearity excipients is mentioned: [Pg.244]    [Pg.151]    [Pg.154]    [Pg.153]    [Pg.156]    [Pg.349]    [Pg.520]    [Pg.5]    [Pg.387]    [Pg.186]    [Pg.156]    [Pg.252]    [Pg.572]    [Pg.618]    [Pg.317]    [Pg.344]    [Pg.426]    [Pg.447]    [Pg.153]    [Pg.92]    [Pg.134]    [Pg.337]    [Pg.94]    [Pg.95]    [Pg.294]    [Pg.365]    [Pg.176]    [Pg.244]    [Pg.151]    [Pg.496]    [Pg.695]    [Pg.1015]   
See also in sourсe #XX -- [ Pg.92 ]

See also in sourсe #XX -- [ Pg.92 ]




SEARCH



Excipient

Excipients

© 2024 chempedia.info