Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linear viscoelasticity defined

Linear viscoelasticity Linear viscoelastic theory and its application to static stress analysis is now developed. According to this theory, material is linearly viscoelastic if, when it is stressed below some limiting stress (about half the short-time yield stress), small strains are at any time almost linearly proportional to the imposed stresses. Portions of the creep data typify such behavior and furnish the basis for fairly accurate predictions concerning the deformation of plastics when subjected to loads over long periods of time. It should be noted that linear behavior, as defined, does not always persist throughout the time span over which the data are acquired i.e., the theory is not valid in nonlinear regions and other prediction methods must be used in such cases. [Pg.113]

The linear viscoelastic behavior of liquid and solid materials in general is often defined by the relaxation time spectrum 11(1) [10], which will be abbreviated as spectrum in the following. The transient part of the relaxation modulus as used above is the Laplace transform of the relaxation time spectrum H(l)... [Pg.174]

When Zotefoam HDPE materials of density 98 kg m" were subjected to a single major compressive impact (419), after recovery at 50 °C for 1 hour, the performance, defined as the energy density absorbed before the compressive stress reached 2.5 MPa was back to 75% of the initial value. Further severe impacts caused a further deterioration of the performance of the recovered foam. Peak compressive strains of 80 to 90% caused some permanent buckling of the cell walls of HDPE foams. The recovery is much slower than the 0.1 second impact time, so is not a conventional linear viscoelastic response. It must be driven by the compressed air in internal cells in the gas, with some contribution from viscoelasticity of the polymer. Recovery of dimensions had slowed to a very low rate after 10 seconds at 20 °C or after 10 seconds at 50 °C. [Pg.19]

The stresses used in a creep test are chosen in two ways. First, a value is chosen from oscillatory tests (specifically stress or strain amplitude sweeps at 1 Hz or 10 rad/sec unit hs.i) to define the linear region. Using two to five different values, the sample is taken from a linear viscoelastic response to the onset of... [Pg.1220]

For a quenched lamellar phase it has been observed that G = G"scales as a>m for tv < tvQ. where tvc is defined operationally as being approximately equal to 0.1t and r is a single-chain relaxation time defined as the frequency where G and G" cross (Bates et al. 1990 Rosedale and Bates 1990). This behaviour has been accounted for theoretically by Kawasaki and Onuki (1990). For a PEP-PEE diblock that was presheared to create two distinct orientations (see Fig. 2.7(c)), Koppi et al. (1992) observed a substantial difference in G for quenched samples and parallel and perpendicular lamellae. In particular, G[ and the viscosity rjj for a perpendicular lamellar phase sheared in the plane of the lamellae were observed to exhibit near-terminal behaviour (G tv2, tj a/), which is consistent with the behaviour of an oriented lamellar phase which flows in two dimensions. These results highlight the fact that the linear viscoelastic behaviour of the lamellar phase is sensitive to the state of sample orientation. [Pg.102]

The most obvious problem of non-linearity is the definition of a modulus. For a linear viscoelastic material we need to define not only a real and an imaginary modulus but also a spectrum of relaxation times if we are fully to describe the material - although it is more usual to quote either an isochronous modulus or a modulus at a fixed frequency. We must, for a full description of a non-linear material give the moduli (and relaxation times) as a function of strain as well this will not usually be practicable so we satisfy ourselves by quoting the modulus at a given strain. The question then arises as to whether this... [Pg.86]

It is necessary to state more precisely and to clarify the use of the term nonlinear dynamical behavior of filled rubbers. This property should not be confused with the fact that rubbers are highly non-linear elastic materials under static conditions as seen in the typical stress-strain curves. The use of linear viscoelastic parameters, G and G", to describe the behavior of dynamic amplitude dependent rubbers maybe considered paradoxical in itself, because storage and loss modulus are defined only in terms of linear behavior. [Pg.4]

Dynamic mechanical analysis involves the determination of the dynamic properties of polymers and their mixtures, usually by applying a mechanical sinusoidal stress For linear viscoelastic behaviour the strain will alternate sinusoidally but will be out of phase with the stress. The phase lag results from the time necessary for molecular rearrangements and this is associated with the relaxation phenomena. The energy loss per cycle, or damping in the system, can be measured from the loss tangent defined as ... [Pg.138]

One may use the linear viscoelastic data as a pure rheological characterization, and relate the viscoelastic parameters to some processing or final properties of the material inder study. Furthermore, linear viscoelasticity and nonlinear viscoelasticity are not different fields that would be disconnected in most cases, a linear viscoelastic function (relaxation fimction, memory function or distribution of relaxation times) is used as the kernel of non linear constitutive equations, either of the differential or integral form. That means that if we could define a general nonlinear constitutive equation that would work for all flexible chains, the knowledge of a single linear viscoelastic function would lead to all rheological properties. [Pg.95]

We will begin with a brief survey of linear viscoelasticity (section 2.1) we will define the various material functions and the mathematical theory of linear viscoelasticity will give us the mathematical bridges which relate these functions. We will then describe the main features of the linear viscoelastic behaviour of polymer melts and concentrated solutions in a purely rational and phenomenological way (section 2.2) the simple and important conclusions drawn from this analysis will give us the support for the molecular models described below (sections 3 to 6). [Pg.96]

The measurable linear viscoelastic functions are defined either in the time domain or in the frequency domain. The interrelations between functions in the firequenpy domain are pxirely algebraic. The interrelations between functions in the time domain are convolution integrals. The interrelations between functions in the time and frequency domain are Carson-Laplace or inverse Carson-Laplace transforms. Some of these interrelations will be given below, and a general scheme of these interrelations may be found in [1]. These interrelations derive directly from the mathematical theory of linear viscoelasticity and do not imply any molecular or continuum mechanics modelling. [Pg.96]

In the various formulations of the mathematical theory of linear viscoelasticity, one should differentiate clearly the measurable and non-measurable fimctions, especially when it comes to modelling apart from the material functions quoted above, one may also define non measurable viscoelastic functions which Eu-e pure mathematical objects, such as the distribution of relaxation times, the distribution of retardation times, and tiie memory function. These mathematical tools may prove to be useful in some situations for example, a discrete distribution of relaxation times is easy to handle numerically when working with constitutive equations of the difierential type, but one has to keep in mind that the relaxation times derived numerically by optimization methods have no direct physical meaning. Furthermore, the use of the distribution of relaxation times is useless and costs precision when one wishes simply to go back and forth from the time domain to the frequency domain. This warning is important, given the large use (and sometimes overuse) of these distribution functions. [Pg.96]

Creep-compliance studies conducted in the linear viscoelastic range also provide valuable information on the viscoelastic behavior of foods (Sherman, 1970 Rao, 1992). The existence of linear viscoelastic range may also be determined from torque-sweep dynamic rheological experiments. The creep-compliance curves obtained at all values of applied stresses in linear viscoelastic range should superimpose on each other. In a creep experiment, an undeformed sample is suddenly subjected to a constant shearing stress, Oc. As shown in Figure 3 1, the strain (y) will increase with time and approach a steady state where the strain rate is constant. The data are analyzed in terms of creep-compliance, defined by the relation ... [Pg.117]

Figure 3.13 Linear viscoelastic data (symbols) for polystyrene in two theta solvents, decalin and diocty Iphthalate, compared to the predictions (lines) of the Zimm theory with dominant hydrodynamic interaction, h = oo. The reduced storage and loss moduli and G are defined by = [G ]M/NAksT and G s [G"]M/A /cbT, where the brackets denote intrinsic values extrapolated to zero concentration, [G jj] = limc o(G /c) and [G j ] = limc +o[(G" — cor)s]/c), and c is the mass of polymer per unit volume of solution. The characteristic relaxation time to is given by to = [rj]oMrjs/NAkBT. For frequencies ro Figure 3.13 Linear viscoelastic data (symbols) for polystyrene in two theta solvents, decalin and diocty Iphthalate, compared to the predictions (lines) of the Zimm theory with dominant hydrodynamic interaction, h = oo. The reduced storage and loss moduli and G are defined by = [G ]M/NAksT and G s [G"]M/A /cbT, where the brackets denote intrinsic values extrapolated to zero concentration, [G jj] = limc o(G /c) and [G j ] = limc +o[(G" — cor)s]/c), and c is the mass of polymer per unit volume of solution. The characteristic relaxation time to is given by to = [rj]oMrjs/NAkBT. For frequencies ro<w greater than 10, G j and G are proportional to in agreement with the Zimm theory, and not the Rouse theory, which predicts G = G" — tj co oc (From Johnson et al. 1970, with permission of the Society of Polymer Science, Japan.)...
Chapters 5 and 6 discuss how the mechanical characteristics of a material (solid, liquid, or viscoelastic) can be defined by comparing the mean relaxation time and the time scale of both creep and relaxation experiments, in which the transient creep compliance function and the transient relaxation modulus for viscoelastic materials can be determined. These chapters explain how the Boltzmann superposition principle can be applied to predict the evolution of either the deformation or the stress for continuous and discontinuous mechanical histories in linear viscoelasticity. Mathematical relationships between transient compliance functions and transient relaxation moduli are obtained, and interrelations between viscoelastic functions in the time and frequency domains are given. [Pg.884]

Materials can show linear and nonlinear viscoelastic behavior. If the response of the sample (e.g., shear strain rate) is proportional to the strength of the defined signal (e.g., shear stress), i.e., if the superposition principle applies, then the measurements were undertaken in the linear viscoelastic range. For example, the increase in shear stress by a factor of two will double the shear strain rate. All differential equations (for example, Eq. (13)) are linear. The constants in these equations, such as viscosity or modulus of rigidity, will not change when the experimental parameters are varied. As a consequence, the range in which the experimental variables can be modified is usually quite small. It is important that the experimenter checks that the test variables indeed lie in the linear viscoelastic region. If this is achieved, the quality control of materials on the basis of viscoelastic properties is much more reproducible than the use of simple viscosity measurements. Non-linear viscoelasticity experiments are more difficult to model and hence rarely used compared to linear viscoelasticity models. [Pg.3134]

Dynamic-shear measurements are of the complex viscosity rj ) as a function of the dynamic oscillation rate (o), at constant temperature. These tests are defined as isothermal dynamic frequency sweeps. Since the dynamic frequency sweeps are conducted at a given amplitude of motion, or strain, it is necessary to ensure that the sweeps are conducted in the region where the response is strain-independent, which is defined as the linear viscoelastic region. This region of strain independence is determined by an isothermal strain sweep, which measures the complex viscosity as a function of applied strain at a given frequency. This ensures that a strain at which the dynamic frequency sweep may be conducted in the linear viscoelastic region is selected. [Pg.338]

The complex viscosity as a function of frequency, maximum strain and temperature is generally determined with one rheometer. Standard ASTM 4440-84/90 defines the measurement of rheological parameters of polymer samples using dynamic oscillation. This standard reiterates the importance of determining the linear viscoelastic region prior to performing dynamic frequency sweeps. [Pg.341]

This idea can be used to formulate an integral representation of linear viscoelasticity. The strategy is to perform a thought experiment in which a step function in strain is applied, e t) = Cq H t), where H t) is the Heaviside step function, and the stress response a t) is measured. Then a stress relaxation modulus can be defined by E t) = <7(t)/ o Note that does not have to be infinitesimal due to the assumed superposition principle. To develop a model capable of predicting the stress response from an arbitrary strain history, start by decomposing the strain history into a sum of infinitesimal strain increments ... [Pg.363]

More recently, a new, viscoelastic-plastic model for suspension of small particles in polymer melts was proposed [Sobhanie et al., 1997]. The basic assumption is that the total stress is divided into that in the matrix and immersed in it network of interacting particles. Consequently, the model leads to non-linear viscoelastic relations with yield function. The latter is defined in terms of structure rupture and restoration. Derived steady state and dynamic functions were compared with the experimental data. [Pg.469]


See other pages where Linear viscoelasticity defined is mentioned: [Pg.90]    [Pg.190]    [Pg.139]    [Pg.180]    [Pg.164]    [Pg.165]    [Pg.166]    [Pg.1217]    [Pg.51]    [Pg.107]    [Pg.168]    [Pg.40]    [Pg.141]    [Pg.95]    [Pg.13]    [Pg.174]    [Pg.67]    [Pg.186]    [Pg.318]    [Pg.322]    [Pg.342]    [Pg.342]    [Pg.327]    [Pg.331]    [Pg.347]    [Pg.67]    [Pg.107]    [Pg.163]    [Pg.12]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Linear defined

Linearity, defined

© 2024 chempedia.info