Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectra Library Searching

An example of a GC-MS run is shown in Figure 2. Toluene is known and elutes at approximately 16.8 min. An unknown compound elutes at 26.3 min. The positive electron impact spectrum for the unknown and the top library search spectrum are shown in Figure 3. A library search identified the unknown component as 1,2-dimethylbenzene. This was confirmed by spiking studies on the sample with a standard of 1,2-dimethylbenzene. [Pg.91]

Spectral searching and stripping in the analysis of a mixture of mannitol and cocaine hydrochloride, (a) IR spectrum for the mixture (b) Library IR spectrum of mannitol (c) Result of subtracting mannitol s IR spectrum from that of the mixture ... [Pg.404]

Once a mass spectrum from an eluting component has been acquired, the next step is to try to identify the component either through the skill of the mass spectroscopist or by resorting to a library search. Most modem GC/MS systems with an attached data station include a large library of spectra from known compounds (e.g., the NIST library). There may be as many as 50,000 to 60,000 stored spectra covering most of the known simple volatile compounds likely to be met in analytical work. Using special search routines under the control of the computer, one can examine... [Pg.257]

Once the peaks have been collected and stored, the computer can be asked to work on the data to produce a mass spectrum and print it out, or it can be asked to carry out other operations such as library searching, producing a mass chromatogram, and making an accurate mass measurement on each peak. Many other examples of the use of computers to process mass data are presented in other chapters of this book. [Pg.320]

However, the two levels may become obvious if the instrument operator tries, for example, to conduct a library search while the computer is trying to acquire input from another mass spectrum the library search has to wait. Acquiring the data is a foreground task. Other functions such as library searching are background tasks. [Pg.421]

Figure 16.2 is the mass spectrum of propylene glycol and shows the presence of an abundant m/z 45 ion. A library search will provide strong evidence that this compound is propylene glycol. Preparation of a TMS derivative will confirm this assignment. [Pg.80]

Library searching The use of a computer to compare a mass spectrum to be identified with large numbers of reference spectra. [Pg.307]

Table 5.9 summarises the main features of FTIR spectroscopy as applied to extracts (separated or not). Since many additives have quite different absorbance profiles FTIR is an excellent tool for recognition. Qualitative identification is relatively straightforward for the different classes of additives. Library searching entails a sequential, point-by-point, statistical correlation analysis of the unknown spectrum with each of the spectra in the library. Fully automated analysis of... [Pg.315]

Figure 23 Top spectrum, ATR-FTIR spectrum from the outside film surface of the dispensing bag. Also displayed are the three best matches from a library search of the top spectrum. Figure 23 Top spectrum, ATR-FTIR spectrum from the outside film surface of the dispensing bag. Also displayed are the three best matches from a library search of the top spectrum.
The three closest matches from spectral library searching are shown below each sample spectrum. The library search results indicate that the clear outer film is an aromatic polyester. This is most likely PET or an ethylene terephthalate/ethylene isophthalate copolymer. No significant spectral... [Pg.667]

Figure 70 ATR-FTIR spectrum of the middle polyethylene layer of the bad white film (top) and the three closest matches from a library search. Figure 70 ATR-FTIR spectrum of the middle polyethylene layer of the bad white film (top) and the three closest matches from a library search.
Once a mass spectrum has been obtained, it is possible to perform a library search, in different databases installed in the local computer or in remote servers through the Internet that can help in identification of unknowns. [Pg.42]

In addition to the above facilities which enable the analyst to save a considerable amount of time and to improve the quality of spectra, there is also the ability to store thousands of spectra on disk in a library of peak tables. Each table will consist of the wavenumbers of twenty or thirty of the most significant peaks in the spectrum together with the corresponding peak transmittance values. Several thousand tables can be stored on a single floppy disk and library searches can be conducted in a matter of seconds. After recording the spectrum of an unknown sample, a preliminary search to indicate possible structural features can be initiated. This may be followed by a complete search in which the peak table for the unknown is matched with as many library tables as the analyst has available. The computer then displays a list of ten to fifteen possible compounds in order of closeness of match using a graded scale, e.g. 0 to 9. [Pg.539]

To record a mass spectrum it is necessary to introduce a sample into the ion source of a mass spectrometer, to ionize sample molecules (to obtain positive or negative ions), to separate these ions according to their mass-to-charge ratio (m/z) and to record the quantity of ions of each m/z. A computer controls all the operations and helps to process the data. It makes it possible to get any format of a spectrum, to achieve subtraction or averaging of spectra, and to carry out a library search using spectral libraries. A principal scheme of a mass spectrometer is represented in Fig. 5.2. To resolve more complex tasks (e.g., direct analysis of a mixture) tandem mass spectrometry (see below and Chapter 3) may be applied. [Pg.120]

Initially the substance at Rt 19.95 was identified as 2-nonen-l-ol based on mass spectrum library search. The comparison with a commercial 2-nonen-l-ol standard indeed revealed a high degree of similarity between the mass spectra, but a distinct deviation regarding the retention time suggesting a similar molecule with a chain length greater than 2-nonen-l-ol. The substance Rt 20.95 was tentatively identified as 6,10-dimethyl-5,9-undecadien-2-one which corresponds with the authentic standard regarding mass spectra and retention time. [Pg.166]

Figure 19.9 compares the observed and library spectra for dichloro-methane (retention time 3.45 min in the GC-MS run). The prominent chlorine isotope pattern for the two chlorine atoms in this spectrum makes it readily identifiable. The primary fragmentation is loss of a chlorine atom, producing the m/z 49 fragment. While this fragment clearly manifests a chlorine isotope pattern still, it reflects the fact that only one chlorine atom remains. Library search identifies this spectrum as dichloromethane with quality-of-fit measures of greater than 95%. [Pg.713]

Fig. 19.8. Electron ionization mass spectrum of toluene (top panel) from GC-MS analysis, and library search match (bottom panel) against the NIST library. Fig. 19.8. Electron ionization mass spectrum of toluene (top panel) from GC-MS analysis, and library search match (bottom panel) against the NIST library.
From the FIA—MS overview spectrum, speculation that there can be more than just one structurally defined molecule type behind an observable signal i.e. the presence of isobaric compounds, cannot be excluded whenever one signal defined by the m/z-ratio is examined in FIA-MS spectra. Consequently, the information obtained by FIA-MS is quite limited whenever we deal with complex mixtures of environmental pollutants rather than the analysis of pure products or formulations with a known range of ingredients. LC separation is inevitable when mixtures of isomeric compounds should be identified with MS-MS. Therefore, in FIA-MS-MS special attention has to be paid to avoid the generation of mixed product ion spectra from isomeric parent compounds. This would block identification by library search and may lead to misinterpretations of product ion spectra because of the fragmentation behaviour observed. [Pg.156]

Library searching is the comparison of the test spectrum with a database of standard spectra. [Pg.129]

The importance of an appropriate transformation of mass spectra has also been shown for relationships between the similarity of spectra and the corresponding chemical structures. If a spectra similarity search in a spectral library is performed with spectral features (instead of the original peak intensities), the first hits (the reference spectra that are most similar to the spectrum of a query compound) have chemical structures that are highly similar to the query structure (Demuth et al. 2004). Thus, spectral library search for query compounds—not present in the database—can produce useful structure information if compounds with similar structures are present. [Pg.305]

In Figure 8.14, the Cold El mass spectrum of corticosterone in methanol solution is shown in the upper trace, and is compared with the standard NIST 98 El library mass spectrum shown in the lower trace. Note the similarity of the library mass spectrum to that obtained with the SMB apparatus. All the major high mass ions of m/z 227, 251, 269, and 315 are with practically identical relative intensity and thus good library search results are enabled with the NIST library-matching factor of 829, and the reversed matching factor of 854% and 86.5% confidence level (probability) in corticosterone identification. In addition, the molecular ion at m/z 346 is now clearly observed while it is practically missing in the library (very small in the shown mass spectrum and absent in the other three replicate mass spectra). [Pg.251]

In the past, PTRC screening was mainly based on gas chromatography-mass spectrometry (GC-MS) [116]. The choice of GC-MS was based on a number of good reasons (separation power of GC, selectivity of detection offered by MS, inherent simplicity of information contained in a mass spectrum, availability of a well established and standardized ionization technique, electron ionization, which allowed the construction of large databases of reference mass spectra, fast and reliable computer aided identification based on library search) that largely counterbalanced the pitfalls of GC separation, i.e., the need to isolate analytes from the aqueous substrate and to derivatize polar compounds [117]. [Pg.674]

The library search is a mathematical comparison of the unknown compound s spectrum with that of all reference compounds in the database. The aim of the comparison is to find the spectrum that most resembles that of the unknown compound. At the end of the search, the computer software makes a list of all spectra that resemble the unknown spectrum. The software lists the spectra relative to the unknown, along with a reliability or correlation index, irrespective of the library used. Because the object of the library search is to help the analyst and not act as a substitute for him/her, the analyst must manually examine the results. The best approaches to identification are interactive approaches in which the analyst can define filters to reduce the field of investigation. Several different algorithms are used for comparison and can lead to different spectra listings. [Pg.182]


See other pages where Spectra Library Searching is mentioned: [Pg.257]    [Pg.266]    [Pg.150]    [Pg.361]    [Pg.459]    [Pg.480]    [Pg.512]    [Pg.631]    [Pg.76]    [Pg.79]    [Pg.67]    [Pg.356]    [Pg.125]    [Pg.127]    [Pg.176]    [Pg.213]    [Pg.79]    [Pg.372]    [Pg.510]    [Pg.713]    [Pg.71]    [Pg.92]    [Pg.129]    [Pg.452]    [Pg.81]    [Pg.200]   
See also in sourсe #XX -- [ Pg.220 ]




SEARCH



Library search

Library searches infrared spectra

Library searches mass spectra

Library searching

Library spectrum

Searching Spectra

Spectrum interpretation library search

Spectrum search

© 2024 chempedia.info