Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lewis transition metal

J. Lewis, Transition Metal—Nitric Oxide Complexes , Sci. Prog. (Oxford), 1959, 47, 506. [Pg.151]

B. F. G. Johnson, and J. Lewis, Transition-Metal Molecular Clusters, Adv. Inorg. Chem. Radiochem. 24, 225-355 (1981). [Pg.126]

First, the use of water limits the choice of Lewis-acid catalysts. The most active Lewis acids such as BFj, TiQ4 and AlClj react violently with water and cannot be used However, bivalent transition metal ions and trivalent lanthanide ions have proven to be active catalysts in aqueous solution for other organic reactions and are anticipated to be good candidates for the catalysis of aqueous Diels-Alder reactions. [Pg.48]

Grown Ethers. Ethylene oxide forms cycHc oligomers (crown ethers) in the presence of fluorinated Lewis acids such as boron tritiuoride, phosphoms pentafluoride, or antimony pentafluoride. Hydrogen fluoride is the preferred catalyst (47). The presence of BF , PF , or SbF salts of alkah, alkaline earth, or transition metals directs the oligomerization to the cycHc tetramer, 1,4,7,10-tetraoxacyclododecane [294-93-9] (12-crown-4), pentamer, 1,4,7,10,13-pentaoxacyclopentadecane [33100-27-6] (15-crown-6), andhexamer, 1,4,7,10,13,16-hexaoxacyclooctadecane [17455-13-9]... [Pg.453]

Raman spectroscopy has provided information on catalytically active transition metal oxide species (e. g. V, Nb, Cr, Mo, W, and Re) present on the surface of different oxide supports (e.g. alumina, titania, zirconia, niobia, and silica). The structures of the surface metal oxide species were reflected in the terminal M=0 and bridging M-O-M vibrations. The location of the surface metal oxide species on the oxide supports was determined by monitoring the specific surface hydroxyls of the support that were being titrated. The surface coverage of the metal oxide species on the oxide supports could be quantitatively obtained, because at monolayer coverage all the reactive surface hydroxyls were titrated and additional metal oxide resulted in the formation of crystalline metal oxide particles. The nature of surface Lewis and Bronsted acid sites in supported metal oxide catalysts has been determined by adsorbing probe mole-... [Pg.261]

Lewis acids are defined as molecules that act as electron-pair acceptors. The proton is an important special case, but many other species can play an important role in the catalysis of organic reactions. The most important in organic reactions are metal cations and covalent compounds of metals. Metal cations that play prominent roles as catalysts include the alkali-metal monocations Li+, Na+, K+, Cs+, and Rb+, divalent ions such as Mg +, Ca +, and Zn, marry of the transition-metal cations, and certain lanthanides. The most commonly employed of the covalent compounds include boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride. Various other derivatives of boron, aluminum, and titanium also are employed as Lewis acid catalysts. [Pg.233]

A unique method to generate the pyridine ring employed a transition metal-mediated 6-endo-dig cyclization of A-propargylamine derivative 120. The reaction proceeds in 5-12 h with yields of 22-74%. Gold (HI) salts are required to catalyze the reaction, but copper salts are sufficient with reactive ketones. A proposed reaction mechanism involves activation of the alkyne by transition metal complexation. This lowers the activation energy for the enamine addition to the alkyne that generates 121. The transition metal also behaves as a Lewis acid and facilitates formation of 120 from 118 and 119. Subsequent aromatization of 121 affords pyridine 122. [Pg.319]

The l ,J -DBFOX/Ph-transition metal aqua complex catalysts should be suitable for the further applications to conjugate addition reactions of carbon nucleophiles [90-92]. What we challenged is the double activation method as a new methodology of catalyzed asymmetric reactions. Therein donor and acceptor molecules are both activated by achiral Lewis amines and chiral Lewis acids, respectively the chiral Lewis acid catalysts used in this reaction are J ,J -DBFOX/Ph-transition metal aqua complexes. [Pg.291]

Metal halides like zinc chloride are used as Lewis-acid catalysts. Other Lewis-acids or protic acids, as well as transition metals, have found application also. The major function of the catalyst seems to be the acceleration of the second step—the formation of the new carbon-carbon bond. [Pg.115]

Chloroaluminate(III) ionic liquid systems are perhaps the best established and have been most extensively studied in the development of low-melting organic ionic liquids with particular emphasis on electrochemical and electrodeposition applications, transition metal coordination chemistry, and in applications as liquid Lewis acid catalysts in organic synthesis. Variable and tunable acidity, from basic through neutral to acidic, allows for some very subtle changes in transition metal coordination chemistry. The melting points of [EMIM]C1/A1C13 mixtures can be as low as -90 °C, and the upper liquid limit almost 300 °C [4, 6]. [Pg.43]

Ionic liquids formed by treatment of a halide salt with a Lewis acid (such as chloro-aluminate or chlorostannate melts) generally act both as solvent and as co-catalyst in transition metal catalysis. The reason for this is that the Lewis acidity or basicity, which is always present (at least latently), results in strong interactions with the catalyst complex. In many cases, the Lewis acidity of an ionic liquid is used to convert the neutral catalyst precursor into the corresponding cationic active form. The activation of Cp2TiCl2 [26] and (ligand)2NiCl2 [27] in acidic chloroaluminate melts and the activation of (PR3)2PtCl2 in chlorostannate melts [28] are examples of this land of activation (Eqs. 5.2-1, 5.2-2, and 5.2-3). [Pg.221]

As one would expect, in those cases in which the ionic liquid acts as a co-catalyst, the nature of the ionic liquid becomes very important for the reactivity of the transition metal complex. The opportunity to optimize the ionic medium used, by variation of the halide salt, the Lewis acid, and the ratio of the two components forming the ionic liquid, opens up enormous potential for optimization. However, the choice of these parameters may be restricted by some possible incompatibilities with the feedstock used. Undesired side reactions caused by the Lewis acidity of the ionic liquid or by strong interaction between the Lewis acidic ionic liquid and, for example, some oxygen functionalities in the substrate have to be considered. [Pg.222]

Acidic chloroaluminate ionic liquids have already been described as both solvents and catalysts for reactions conventionally catalyzed by AICI3, such as catalytic Friedel-Crafts alkylation [35] or stoichiometric Friedel-Crafts acylation [36], in Section 5.1. In a very similar manner, Lewis-acidic transition metal complexes can form complex anions by reaction with organic halide salts. Seddon and co-workers, for example, patented a Friedel-Crafts acylation process based on an acidic chloro-ferrate ionic liquid catalyst [37]. [Pg.225]

Flowever, ionic liquids acting as transition metal catalysts are not necessarily based on classical Lewis acids. Dyson et al. recently reported the ionic liquid [BMIM][Co(CO)4] [38]. The system was obtained as an intense blue-green colored liquid by metathesis between [BMIM]C1 and Na[Co(CO)4]. The liquid was used as a catalyst in the debromination of 2-bromoketones to their corresponding ketones. [Pg.225]

The purity of ionic liquids is a key parameter, especially when they are used as solvents for transition metal complexes (see Section 5.2). The presence of impurities arising from their mode of preparation can change their physical and chemical properties. Even trace amounts of impurities (e.g., Lewis bases, water, chloride anion) can poison the active catalyst, due to its generally low concentration in the solvent. The control of ionic liquid quality is thus of utmost importance. [Pg.278]

Thermolysis rates are enhanced substantially by the presence of certain Lewis acids (e.g. boron and aluminum halides), and transition metal salts (e.g. Cu ", Ag1).46 There is also evidence that complexes formed between azo-compounds and Lewis acids (e.g. ethyl aluminum scsquichloridc) undergo thermolysis or photolysis to give complexed radicals which have different specificity to uncomplexed radicals.81 83... [Pg.73]

The magnetic properties of transition metal complexes. B. N. Figgis and J. Lewis, Prog. Inorg. [Pg.26]

Divalent transition metal 3-keto-enolate complexes as Lewis acids. D. P. Graddon, Coord. Chem. Rev., 1969, 4,1-28(117). [Pg.34]

Organonitrile complexes of transition metals. B. N. Storhoff andH. C. Lewis, Coord. Chem. Rev., 1977,23,1-29 (156). [Pg.48]

Transition metals have been used to complex Lewis-basic centers in metathesis substrates and to arrange the reacting olefins in such a way that cycliza-tion is facilitated. Olefin metathesis of 122, for example, proceeds with good yield to the bispyridine macrocycle 123 (Eq. 17) [115]. [Pg.258]

Transition-metal-based Lewis acids such as molybdenum and tungsten nitro-syl complexes have been found to be active catalysts [49]. The ruthenium-based catalyst 50 (Figure 3.6) is very effective for cycloadditions with aldehyde- and ketone-bearing dienophiles but is ineffective for a,)S-unsaturated esters [50]. It can be handled without special precautions since it is stable in air, does not require dry solvents and does not cause polymerization of the substrates. Nitromethane was the most convenient organic solvent the reaction can also be carried out in water. [Pg.114]

It is believed that clay minerals promote organic reactions via an acid catalysis [2a]. They are often activated by doping with transition metals to enrich the number of Lewis-acid sites by cationic exchange [4]. Alternative radical pathways have also been proposed [5] in agreement with the observation that clay-catalyzed Diels-Alder reactions are accelerated in the presence of radical sources [6], Montmorillonite K-10 doped with Fe(III) efficiently catalyzes the Diels-Alder reaction of cyclopentadiene (1) with methyl vinyl ketone at room temperature [7] (Table 4.1). In water the diastereoselectivity is higher than in organic media in the absence of clay the cycloaddition proceeds at a much slower rate. [Pg.144]

Nishiyama H., Motoyama Y. Other Transition Metal Reagents Chiral Transition-Metal Lewis Acid Catalysis for Asymmetric Organic Synthesis in Lewis Acid Reagents 1999 225, Ed Yamamoto H., Pb. Oxford Univ. Press, Oxford Keywords asymmetric Diels-Alder reactions, chiral transition metal Lewis-acid catalysis, asymmetric synthesis... [Pg.305]


See other pages where Lewis transition metal is mentioned: [Pg.82]    [Pg.608]    [Pg.232]    [Pg.324]    [Pg.438]    [Pg.47]    [Pg.210]    [Pg.110]    [Pg.608]    [Pg.83]    [Pg.87]    [Pg.34]    [Pg.152]    [Pg.250]    [Pg.285]    [Pg.340]    [Pg.70]    [Pg.266]    [Pg.58]    [Pg.187]    [Pg.99]    [Pg.121]    [Pg.132]    [Pg.236]    [Pg.259]    [Pg.461]   
See also in sourсe #XX -- [ Pg.421 ]




SEARCH



Aldol Transition-metal Lewis acid

Diels Transition-metal Lewis acid catalyze

Ethylene polymerization, with Lewis acid transition metal

Homogeneous Epoxidation by Early Transition Metals (Lewis Acid Mechanism)

Late transition metal Lewis acids

Lewis acid catalysts transition metal promoters

Lewis acid transition metal catalysts)

Lewis acids transition metal-based

Lewis acids transition-metal cooperative

Lewis base transition metals

Lewis metals

Lewis-like structures in transition metal bonding

Transition metal Lewis acid coordination with

Transition metal bonding Lewis-like structures

Transition metal halides complex Lewis acid reagent

Transition metals Lewis acids

Transition metals Lewis base-carbonyl complexes

Transition metals sites with Lewis acidic properties

Transition-Metal Lewis Acids From Vanadium to Platinum

Transition-Metal Molecular Clusters B. F. G. Johnson and J. Lewis

Use of Chiral Lewis Acids and Transition Metal Complexes

© 2024 chempedia.info