Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lamp residues

Lampe J. Preparing surfaces for radiological determining of residual austenite MOC IMP No 47,1980. [Pg.24]

Cycloocta l,5-dlona-2 -(or 3 )earboxyllc acid mattiyl aster (3) (4), A solution d eyclohe)(a-1,3-dlone 1 (1.00 g, 8.9 mmol) in methyl acrylate 2 (100 g. 1.16 mmol) was Irradiated with a X 450 W medkjm pressure lamp under Na through a pyrex (Iter (or 5 h. The semicrystalliM residue obtained after removal oi the solvent, was crystallized from MeOH, the n ther liquor, separated by preparative TLC (PhH Et20) and the main fraction oonMned vrilh the crystals to gM 1.06 g of 3 (60%), mp 104-105°C (MeOH), The second minor fraction (from TLC) gave 4, mp 91 C (MeOH). [Pg.92]

A solution of 500 mg 3 -acetoxypregn-5-en-20-one-[17a,16a-c]-A -pyrazoline in 100 ml of anhydrous dioxane is stirred with a magnetic stirrer and irradiated in a water-cooled quartz reactor with a high pressure Biosol Philips 250 W quartz lamp for 1 hr. The solvent is removed at reduced pressure and the residue is chromatographed on alumina (activity III). Elution with petroleum ether-benzene (3 1) gives 0.2 g (42%) of 3 -acetoxy-16a,17a-methylene-pregn-5-en-20-one mp 193-193.5° after two recrystallizations from methylene dichloride-ethyl acetate. [Pg.107]

A mixture consisting of 0.69 g (10.5 mmoles) of zinc-copper couple, 12 ml of dry ether, and a small crystal of iodine, is stirred with a magnetic stirrer and 2.34 g (0.7 ml, 8.75 mmoles) of methylene iodide is added. The mixture is warmed with an infrared lamp to initiate the reaction which is allowed to proceed for 30 min in a water bath at 35°. A solution of 0.97 g (2.5 mmoles) of cholest-4-en-3/ -ol in 7 ml of dry ether is added over a period of 20 min, and the mixture is stirred for an additional hr at 40°. The reaction mixture is cooled with an ice bath and diluted with a saturated solution of magnesium chloride. The supernatant is decanted from the precipitate, and the precipitate is washed twice with ether. The combined ether extracts are washed with saturated sodium chloride solution and dried over anhydrous sodium sulfate. The solvent is removed under reduced pressure and the residue is chromatographed immediately on 50 g of alumina (activity III). Elution with benzene gives 0.62 g (62%) of crystalline 4/5,5/5-methylene-5 -cholestan-3/5-ol. Recrystallization from acetone gives material of mp 94-95° Hd -10°. [Pg.112]

Preparation of 18,20-Cyclo-5a-pregnane-3, 20-diol 3-Acetate ° A solution of 5 g of 3j9-hydroxy-5oc-pregnan-20-one 3-acetate in 1000 ml of spectroscopically pure ethanol is irradiated with a 250 Watt Philips Biosol A mercury high pressure lamp No. 10/27 through a cental water cooled pyrex jacket under nitrogen for 4 hr. The solvent is then evaporated under reduced pressure and the residues from 2 such reactions are combined and chromatographed on 300 g of neutral alumina (activity II). [Pg.264]

Irradiations of Testosterone Acetate (114), —In t-Butanol. 1.25 g of (114) in 250 ml t-butanol is irradiated for 32 hr at 30° under nitrogen with a Hanau Q81 high-pressure mercury lamp placed in a central water-cooled Pyrex immersion well with acetone filter. The solvent is evaporated in vacuo and the residue chromatographed on 125 g silica gel with benzene-ethyl acetate (4 1) to yield 0.29 g 17 -hydroxy-la,5 -cyclo-10a-androstan-2-one acetate [(118) 23%] mp 164-165°, after crystallization from acetone-hexane [a]i3 37 (CHCI3) 0.14 g cyclopentanone (120) (11%) mp 106-107° [aJo 38° (CHCI3) and 0.58 g starting material [(114) 46%]. Ratio (118) (120) - 2 1. [Pg.322]

With 2537 k-Light. 1 g (140) in 140 ml anhydrous dioxane is irradiated for 20 hr at room temperature with a Hanau NK 6/20 low-pressure mercury lamp placed in a central water-cooled quartz finger. 0.19 g of (141) crystallize from the crude reaction mixture as described above. Chromatography of the residual material on silica gel with benzene-ethyl acetate (4 1) gives 0.29 g of B-nortestosterone acetate [(142) 28.5 %] and starting material (140). [Pg.329]

A solution of 5 g of (267) in 140 ml of benzene is irradiated for 24 hr at 15-20° with a 70-W Hanau Q81 high pressure mercury lamp in a central pyrex immersion well. A stream of ethylene is bubbled through the solution during the irradiation. After evaporation of the solvent the residue is... [Pg.348]

A 500-ml three-necked flask is fitted with a mechanical stirrer, a thermometer, a gas outlet, and a gas inlet tube dipping into the solution. The flask is charged with a solution of cyanuric acid (15 g, 0.116 mole) dissolved in 300 ml of 5% aqueous potassium hydroxide solution. The flask is cooled in an ice-salt bath with stirring to 0° and irradiated with a mercury lamp. A rapid stream of chlorine is passed into the flask (approx. 5 ml/sec), whereupon a heavy white precipitate forms. The addition of gas is continued until the solid material no longer forms (approx. 2 hours). The flask is briefly flushed with air, the product is collected by suction filtration in an ice-cooled funnel, and the residue washed with several small portions of cold water. Since it undergoes slow hydrolysis, the product should be dried in a vacuum oven. The crude product has a variable melting point (195-225°) the yield is about 20 g (approx. 75%). [Pg.157]

A mixture of 2.0 g (0.064 mol) of 2-fluoromethyl-3-(o-tolyl)-6-nitro-4(3H)-qulnazolinone, Oi g of 5% palladium-carbon and 100 ml of acetic acid is shaken for 30 minutes in hydrogen gas. The initial pressure of hydrogen gas is adjusted to 46 lb and the mixture is heated with an infrared lamp during the reaction. After 30 minutes of this reaction, the pressure of hydrogen gas decreases to 6 lb. After the mixture is cooled, the mixture is filtered to remove the catalyst. The filtrate is evaporated to remove acetic acid, and the residue is dissolved in chloroform. The chloroform solution is washed with 5% aqueous sodium hydroxide and water, successively. Then, the solution is dried and evaporated to remove solvent. The oily residue thus obtained is dissolved in 2 ml of chloroform, and the chloroform solution is passed through a column of 200 g of silica gel. The silica gel column is eluted with ethyl acetate-benzene (1 1). Then, the eluate is evaporated to remove solvent. The crude crystal obtained is washed with isopropylether and recrystallized from isopropanol. 0.95 g of 2-fluoromethyl-3-(o-tolyl)-6-amino-4(3H)-quinazolinone Is obtained. Yield 52.5% MP 195°-196°C. [Pg.30]

In the case of photoinitiated polymerization, an oxygen-free aqueous solution of acrylamide with a concentration of about 50% mixed with a photosensibilizer and other required additives is passed through a column-type apparatus with exterior water-cooling. A thin layer of the solution is exposed to a mercury lamp, acquires the consistency of a plastic film, which then can be passed through a second exposure zone, and is crushed and dried. Acrylamide polymers produced by this method are easily soluble and have a low residual monomer content. [Pg.66]

A solution of dimethyl 3-acetyl-3-azatetracyclo[3.2.0.02-7.04 6]heptane-l,5-dicarboxylate (2, R1 = Ac R = H), formed by the photolysis (14 h 125-W Hg lamp under N2) of dimethyl 7-acetyl-7-azabicyclo-[2.2.1]hepta-2,5-diene-2,3-dicarboxylate (1 R1 = Ac, R2 = H 1 g, 4mmol) in Et20 (400 mL) at — 40 C, was evaporated to dryness under reduced pressure. The residue (0.7 g, 2.8 mmol) was dissolved in CHC1, and the solution heated under reflux for 1 h. Evaporation of the solvent yielded the crude product which was purified by column chromatography (silica gel, C,H2C12). The yellow fractions were collected and, after removal of the solvent, the residual oil was distilled in a sublimation apparatus to give 3 (R1 = Ac R2 = H) as a yellow oil yield 0.8 g (80%) bp 50 60 C/5 x 10 4 Torr. [Pg.133]

A solution of ethyl azidoformate (10 g, 87 mmol) in anhyd benzene (250 mL) was photolyzed at 60-70 C for 60 h, using a high-pressure Hg ultraviolet lamp, whereupon N2 was evolved and the solution became yellow. The benzene and remaining azido ester were removed under reduced pressure, and the yellow-brown oily residue distilled under high vacuum to give a yellow oil yield 8.35 g (67%) bp 46-47 C/5 x 10"3 Torr bp 130 C/0.2 Torr. [Pg.138]

A solution of the 2-azido ester or amide (ca. 2 g) in a mixture of MeOII (95 mL) and sodium-dried THF (95 mL) was photolyzed under N2 in a Hanovia photochemical reactor (110-W medium-pressure Hg lamp with a Pyrex filter). The reaction was monitored by observing the rate of disappearance of the absorption band (Nf) at 2140 cm 1 (irradiation times of 3-5 h were generally required). When the reaction was complete the solvent was removed in vacuo and the brown residual oil chromatographed on alumina [petroleum ether (bp 60-803C)/benzene 7 3]. Further elution with benzene followed by removal of the solvent gave the product (the esters as pale yellow oils, the amides as crystalline solids), which were further purified by vacuum distillation or by recrysiallization. [Pg.153]

Acridine-9-carbonitrile 10-oxide (la 3.00g, 13.6 mmol) in benzene (1.8 L) in a quartz immersion well was irradiated for 3 h with a Hanovia high-pressure 450-W Hg lamp equipped with a Pyrex filter. The resulting solution was evaporated under reduced pressure and the residue was extracted with pentane (3 x 50 mL). The combined extracts were evaporated under reduced pressure at 20 C to give orange crystals yield 1.8 g (60%) mp 105-109 C (Et20/pentane). [Pg.300]

Pyridine-2,6-dicarbonitrile 1-oxide (500 mg, 3.45 mmol) in CH2C12 (500 mL) was irradiated for 10 h with a high-pressure 450-W Hanovia Hg lamp. The solution was evaporated under reduced pressure and the residue was extracted several times with pentane. The combined extracts were concentrated and the residue was repeatedly recrystallized (pentane) to give yellow needles yield 150mg (30%) mp 61-63 C (dec.). [Pg.302]

Methyl-1-phenylisoquinoline 2-oxide (l.OOg, 4.3 mmol) in acetone (200 mL) was irradiated with a Hanovia Q-700 medium-pressure Hg lamp until TLC showed that all starting material had been consumed. The solution was evaporated in vacuo, and the oily residue purified by preparative layer chromatography yield 0.485 g (48.5%) mp 73-75 C. [Pg.307]

Phenylquinoline 1-oxide (10.0 g, 45.2 mmol) in acetone (1.25 L) was irradiated for 12 h with a Hanovia Q-700 medium-pressure Hg lamp, equipped with a Pyrex cooling mantle placed in the center of the reaction vessel, when TLC showed the absence of starting material. The solution was evaporated in vacuo and the residue was extracted with boiling hexane. The extract was evaporated under reduced pressure and the residue was crystallized (pentane) yield 9.0 g (90%) mp 65-66 C. [Pg.308]

A solution of quinoline 1-oxide (0.29 g, 2 mmol) in cyclohexane (1 L) was dehydrated by azeotropic distillation in the reaction vessel. The solution was purged with dry N2 and irradiated with a Hanau high-pressure Hg lamp. The resulting solution was evaporated and the residue was extracted with a little cyclohexane. The insoluble part contained carbostyril (3). The cyclohexane extract was evaporated and the residue purified by short-path distillation at 50°C/0.1 Torr yield 0.174g (60%) moisture-sensitive oil. [Pg.308]

An ice-cold solution of a 3-oxa-6-azatricvclo[3.2.0.02,4]hept-6-ene 1 (0.5-1.0 mmol) in MeCN (200 mL) was irradiated with a 30-W low-pressure Hg lamp for 10-125 min. The solvent was removed under reduced pressure and the residue was treated with active charcoal and hexane/i-Pr20. The mixture was filtered and the filtrate was evaporated under reduced pressure to leave the almost pure 1,4-oxazepines as orange oils, which showed vmal (neat) — 1660-1650 cm-L The products decomposed on attempted chromatography. [Pg.310]


See other pages where Lamp residues is mentioned: [Pg.259]    [Pg.78]    [Pg.486]    [Pg.129]    [Pg.140]    [Pg.371]    [Pg.524]    [Pg.405]    [Pg.167]    [Pg.245]    [Pg.251]    [Pg.259]    [Pg.277]    [Pg.298]    [Pg.322]    [Pg.329]    [Pg.342]    [Pg.397]    [Pg.444]    [Pg.96]    [Pg.12]    [Pg.219]    [Pg.216]    [Pg.727]    [Pg.1299]    [Pg.518]    [Pg.339]    [Pg.354]   
See also in sourсe #XX -- [ Pg.2 , Pg.201 ]




SEARCH



Lampe

Lamps

© 2024 chempedia.info