Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics Modelling active sites

A review of using DFT methods in combination with kinetic Monte Carlo for modeling active sites on metal catalysts, see M. Neurock, J. Catalysis 216 (2003), 73 88. [Pg.160]

PLE catalyzes the hydrolysis of a wide range of meso-diesters (Table 2). This reaction is interesting from both theoretical and practical standpoints. Indeed, the analysis of a large range of kinetic data provided sufficient information to create a detailed active site model of PLE (31). From a practical standpoint, selective hydrolysis of y j (9-cyclo-I,2-dicarboxylates leads to chiral synthons that are valuable intermediates for the synthesis of a variety of natural products. [Pg.333]

In this article we critically review most of the literature concerning non-catalyzed, proton-catalyzed and metal-catalyzed polyesterifications. Kinetic data relate both to model esterifications and polyeste-rificatiom. Using our own results we analyze the experimental studies, kinetic results and mechanisms which have been reported until now. In the case of Ti(OBu)f catalyzed reactions we show that most results were obtained under experimental conditions which modify the nature of the catalyst. In fact, the true nature of active sites in the case of metal catalysts remains largely unknown. [Pg.51]

More complicated rate expressions are possible. For example, the denominator may be squared or square roots can be inserted here and there based on theoretical considerations. The denominator may include a term k/[I] to account for compounds that are nominally inert and do not appear in Equation (7.1) but that occupy active sites on the catalyst and thus retard the rate. The forward and reverse rate constants will be functions of temperature and are usually modeled using an Arrhenius form. The more complex kinetic models have enough adjustable parameters to fit a stampede of elephants. Careful analysis is needed to avoid being crushed underfoot. [Pg.210]

A kinetic model which accounts for a multiplicity of active centres on supported catalysts has recently been developed. Computer simulations have been used to mechanistically validate the model and examine the effects on Its parameters by varying the nature of the distrlbultons, the order of deactivation, and the number of site types. The model adequately represents both first and second order deactivating polymerizations. Simulation results have been used to assist the interpretation of experimental results for the MgCl /EB/TlCl /TEA catalyst suggesting that... [Pg.403]

Heterogeneous Ziegler-Natta catalysts used to polymerize olefins exhibit phenomena characteristic of active site heterogeneity (1- 5). Complex kinetic models which account for this likelihood have been developed and used only in simulation studies (6-7). [Pg.403]

The initial set of simulations were used to mechanistically validate the kinetic model so it could be used in meaningful kinetic Investigations. By pre-determining the distribution of active sites, actual (theoretical) values of 9j and 02 can be... [Pg.407]

Computer simulations have been useful for validating a kinetic model that Is not easily tested. The model was equally capable of describing multi-site polymerizations which can undergo either first or second order deactivation. The model parameters provided reasonably accurate kinetic information about the Initial active site distribution. Simulation results were also used as aids for Interpretation of experimental data with encouraging results. [Pg.413]

We have developed a compact photocatalytic reactor [1], which enables efficient decomposition of organic carbons in a gas or a liquid phase, incorporating a flexible and light-dispersive wire-net coated with titanium dioxide. Ethylene was selected as a model compound which would rot plants in sealed space when emitted. Effects of the titanium dioxide loading, the ethylene concentration, and the humidity were examined in batches. Kinetic analysis elucidated that the surface reaction of adsorbed ethylene could be regarded as a controlling step under the experimental conditions studied, assuming the competitive adsorption of ethylene and water molecules on the same active site. [Pg.241]

Kinetic analysis based on the Langmuir-Hinshelwood model was performed on the assumption that ethylene and water vapor molecules were adsorbed on the same active site competitively [2]. We assumed then that overall photocatalytic decomposition rate was controlled by the surface reaction of adsorbed ethylene. Under the water vapor concentration from 10,200 to 28,300ppm, and the ethylene concentration from 30 to 100 ppm, the reaction rate equation can be represented by Eq.(l), based on the fitting procedure of 1/r vs. 1/ Ccm ... [Pg.244]

The SCR catalyst is considerably more complex than, for example, the metal catalysts we discussed earlier. Also, it is very difficult to perform surface science studies on these oxide surfaces. The nature of the active sites in the SCR catalyst has been probed by temperature-programmed desorption of NO and NH3 and by in situ infrared studies. This has led to a set of kinetic parameters (Tab. 10.7) that can describe NO conversion and NH3 slip (Fig. 10.16). The model gives a good fit to the experimental data over a wide range, is based on the physical reality of the SCR catalyst and its interactions with the reacting gases and is, therefore, preferable to a simple power rate law in which catalysis happens in a black box . Nevertheless, several questions remain unanswered, such as what are the elementary steps and what do the active site looks like on the atomic scale ... [Pg.399]

Two types of sulfoximinocarboxylates (analogous to sulfinylcarboxylates 16), namely 5 -aryl-5 -methoxycarbonylmethyl-A(-methyl sulfoximine 36 and -methyl-5 -phenyl-A(-ethoxycarbonyl sulfoximine 37, were subjected to hydrolysis in the presence of PLE in a phosphate buffer. As a result of a kinetic resolution, both the enantiomerically enriched recovered substrates and the products of hydrolysis and subsequent decarboxylation 38 and 39, respectively, were obtained with moderate to good ees (Equations 20 and 21). Interestingly, in each case the enantiomers of the substrates, having opposite spatial arrangement of the analogous substituents, were preferentially hydrolysed. This was explained in terms of the Jones PLE active site model. ... [Pg.171]

Evaluating the results a clear kinetic picture of the catalysts has been obtained. In the steady state the active sites in Fe- and Cu-ZSM-5 are nearly fully oxidized, while for Co only -50% of the sites are oxidized. The former catalysts oporate in an oxidation reduction cycle, Fe /Fe and CuVCu. Coi in zeolites is hardly oxidized or reduced, but ESR studies on diluted solid solutions of Co in MgO indicate that Co -0 formation is possible, rapidly followed by a migration of the deposited oxygen to lattice oxygen and reduction back to Co [36]. For Fe-ZSM-5 such a migration has been observed, so a similar model can be proposed for the zeolitic systems. Furthermore, it is obvious that application of these catalysts strongly depends on the composition of the gas that has to be treated. [Pg.649]

Abstract A review is provided on the contribution of modern surface-science studies to the understanding of the kinetics of DeNOx catalytic processes. A brief overview of the knowledge available on the adsorption of the nitrogen oxide reactants, with specific emphasis on NO, is provided first. A presentation of the measurements of NO, reduction kinetics carried out on well-characterized model system and on their implications on practical catalytic processes follows. Focus is placed on isothermal measurements using either molecular beams or atmospheric pressure environments. That discussion is then complemented with a review of the published research on the identification of the key reaction intermediates and on the determination of the nature of the active sites under realistic conditions. The link between surface-science studies and molecular computational modeling such as DFT calculations, and, more generally, the relevance of the studies performed under ultra-high vacuum to more realistic conditions, is also discussed. [Pg.67]

As the above discussion indicates, assigning mechanisms to simple anation reactions of transition metal complexes is not simple. The situation becomes even more difficult for a complex enzyme system containing a metal cofactor at an active site. Methods developed to study the kinetics of enzymatic reactions according to the Michaelis-Menten model will be discussed in Section 2.2.4. [Pg.11]


See other pages where Kinetics Modelling active sites is mentioned: [Pg.699]    [Pg.123]    [Pg.67]    [Pg.443]    [Pg.522]    [Pg.679]    [Pg.487]    [Pg.117]    [Pg.395]    [Pg.320]    [Pg.376]    [Pg.204]    [Pg.338]    [Pg.154]    [Pg.241]    [Pg.118]    [Pg.166]    [Pg.50]    [Pg.399]    [Pg.61]    [Pg.87]    [Pg.245]    [Pg.418]    [Pg.1194]    [Pg.55]    [Pg.217]    [Pg.136]    [Pg.366]    [Pg.32]    [Pg.135]    [Pg.209]    [Pg.184]   
See also in sourсe #XX -- [ Pg.483 ]




SEARCH



Activation kinetics

Activation model

Active model

Active-site model

Activity model

Kinetic activity

Site modeling

© 2024 chempedia.info