Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetically controlled reactions kinetic data

Degenerate equilibrium reactions are the exception rather than the rule. For kinetically controlled reactions equilibrium data are often lacking, whereas structural and kinetic data may be available. This raises the question whether there are still correlations between structures and rate constants, analogous to those discussed in the preceding section and to those between equilibria and rate constants. As will be shown, very much the same conclusions may be reached as for degenerate reactions. [Pg.189]

The reactions of enamines as 1,3-dipolarophiles provide the most extensive examples of applications to heterocyclic syntheses. Thus the addition of aryl azides to a large number of cyclic (596-598) and acyclic (599-602) enamines has led to aminotriazolines which could be converted to triazoles with acid. Particular attention has been given to the direction of azide addition (601,603). While the observed products suggest a transition state in which the development of charges gives greater directional control than steric factors, kinetic data and solvent effects (604-606) speak against zwitterionic intermediates and support the usual 1,3-dipolar addition mechanism. [Pg.440]

The first equation was derived by assuming that the rate-controlling step is the reaction of one molecule of adsorbed C02 with two molecules of dissociated adsorbed hydrogen. The second equation, which correlates almost as well, is based on the assumption that the rate-determining step is the reaction of one molecule of adsorbed C02 with two molecules of adsorbed hydrogen. This indicates that, in this particular case, it was not possible to prove reaction mechanisms by the study of kinetic data. [Pg.22]

In other instances, reaction kinetic data provide an insight into the rate-controlling steps but not the reaction mechanism see, for example, Hougen and Watson s analysis of the kinetics of the hydrogenation of mixed isooctenes (16). Analysis of kinetic data can, however, yield a convenient analytical insight into the relative catalyst activities, and the effects of such factors as catalyst age, temperature, and feed-gas impurities on the catalyst. [Pg.22]

Since the free energy of a molecule in the liquid phase is not markedly different from that of the same species volatilized, the variation in the intrinsic reactivity associated with the controlling step in a solid—liquid process is not expected to be very different from that of the solid—gas reaction. Interpretation of kinetic data for solid—liquid reactions must, however, always consider the possibility that mass transfer in the homogeneous phase of reactants to or products from, the reaction interface is rate-limiting [108,109], Kinetic aspects of solid—liquid reactions have been discussed by Taplin [110]. [Pg.15]

The account of the formal derivation of kinetic expressions for the reactions of solids given in Sect. 3 first discusses those types of behaviour which usually generate three-dimensional nuclei. Such product particles may often be directly observed. Quantitative measurements of rates of nucleation and growth may even be possible, thus providing valuable supplementary evidence for the analysis of kinetic data. Thereafter, attention is directed to expressions based on the existence of diffuse nuclei or involving diffusion control such nuclei are not susceptible to quantitative... [Pg.48]

Boddington and Iqbal [727] have interpreted kinetic data for the slow thermal and photochemical decompositions of Hg, Ag, Na and T1 fulminates with due regard for the physical data available. The reactions are complex some rate studies were complicated by self-heating and the kinetic behaviour of the Na and T1 salts is not described in detail. It was concluded that electron transfer was involved in the decomposition of the ionic solids (i.e. Na+ and Tl+ salts), whereas the rate-controlling process during breakdown of the more covalent compounds (Hg and Ag salts) was probably bond rupture. [Pg.166]

The (en) compound developed nuclei which advanced rapidly across all surfaces of the reactant crystals and thereafter penetrated the bulk more slowly. Kinetic data fitted the contracting volume equation [eqn. (7), n = 3] and values of E (67—84 kJ mole"1) varied somewhat with the particle size of the reactant and the prevailing atmosphere. Nucleus formation in the (pn) compound was largely confined to the (100) surfaces of reactant crystallites and interface advance proceeded as a contracting area process [eqn. (7), n = 2], It was concluded that layers of packed propene groups within the structure were not penetrated by water molecules and the overall reaction rate was controlled by the diffusion of H20 to (100) surfaces. [Pg.237]

Such systems have the experimental advantage that kinetic data may be obtained by gravimetric or evolved gas pressure measurements. However, these data must be interpreted with care, since gas release is not necessarily concurrent with the solid—solid interaction but may, in principle, be a distinct rate process under independent kinetic control and occur either before or after reaction between the solids. Possible mechanisms to be considered, therefore, include the following. [Pg.272]

For most real systems, particularly those in solution, we must settle for less. The kinetic analysis will reveal the number of transition states. That is, from the rate equation one can count the number of elementary reactions participating in the reaction, discounting any very fast ones that may be needed for mass balance but not for the kinetic data. Each step in the reaction has its own transition state. The kinetic scheme will show whether these transition states occur in succession or in parallel and whether kinetically significant reaction intermediates arise at any stage. For a multistep process one sometimes refers to the transition state. Here the allusion is to the transition state for the rate-controlling step. [Pg.126]

Revisions of the continuous-flow method have been made to allow observations along the length of the flow tube rather than at right angles.5 This method, fast continuous flow, eliminates the dead time during which the reaction cannot be observed. Kinetic data can be extracted to a time resolution of nearly 10 p,s, but the mathematics is more complicated in this limit, because the mixing and chemical reaction occur on the same time scale. Rate constants nearly as large as the diffusion-controlled value have been determined in favorable cases.6... [Pg.256]

Kinetic data on the carbonylation of vinyl cations have not been obtained so far, but it is likely to be a diffusion-controlled reaction as in the case of primary alkyl cations (Section IV, A). [Pg.46]

A system has been constructed which allows combined studies of reaction kinetics and catalyst surface properties. Key elements of the system are a computer-controlled pilot plant with a plug flow reactor coupled In series to a minireactor which Is connected, via a high vacuum sample transfer system, to a surface analysis Instrument equipped with XFS, AES, SAM, and SIMS. When Interesting kinetic data are observed, the reaction Is stopped and the test sample Is transferred from the mlnlreactor to the surface analysis chamber. Unique features and problem areas of this new approach will be discussed. The power of the system will be Illustrated with a study of surface chemical changes of a Cu0/Zn0/Al203 catalyst during activation and methanol synthesis. Metallic Cu was Identified by XFS as the only Cu surface site during methanol synthesis. [Pg.15]

The RHSE has the same limitation as the rotating disk that it cannot be used to study very fast electrochemical reactions. Since the evaluation of kinetic data with a RHSE requires a potential sweep to gradually change the reaction rate from the state of charge-transfer control to the state of mass transport control, the reaction rate constant thus determined can never exceed the rate of mass transfer to the electrode surface. An upper limit can be estimated by using Eq. (44). If one uses a typical Schmidt number of Sc 1000, a diffusivity D 10 5 cm/s, a nominal hemisphere radius a 0.3 cm, and a practically achievable rotational speed of 10000 rpm (Re 104), the mass transfer coefficient in laminar flow may be estimated to be ... [Pg.201]

Several assumptions were made in order to analyze kinetic data in terms of this expression (2). First it was assumed that k 2 m kj, k2 k 3, and kj/k j k /k ( - If). Second it was assumed that the rate constants were independent of the extent of reaction i.e., that all six functional groups were equally reactive and that the reaction was not diffusion controlled. The concentration of polymer hydroxyl functionality was determined experimentally using infrared spectroscopy as described elsewhere (7). A major unknown is the instantaneous concentration of methanol. Fits to the kinetic data were made with a variety of assumptions concerning the methanol concentration. The best fit was achieved by assuming that the concentration of methanol was initally constant but decreased at a rate proportional to the concentration of residual polymer hydroxy groups towards the end of the reaction. As... [Pg.258]

Evaluation of kinetic data. Rate constants were determined for 2-H exchange from 3-R-4-methylthiazolium ions, catalyzed by D2O (pseudo first order) and DO- (second order).154 The observed rate constants for the pD-independent exchange reaction were corrected for the solvent isotope effect ( h2o/ d2o = 2.6), and the reverse protonation of the carbene by H30+ was assumed to be diffusion-controlled (k = 2 x 1010 M-1 s-1). A similar analysis was performed for the exchange catalysed by DO-. The results agreed nicely, giving pAfa = 18.9 for 213 and p/sfa = 18.0 for thiamine.154 The thiazolium ion 213 seems to be less acidic in water154 than in DMSO152 (Ap/fa = 2.4). Aside from the... [Pg.42]

The determination of a realistic reaction network from experimental kinetics data may be difficult, but it provides a useful model for proper optimization, control, and improvement of a chemical process. One method for obtaining characteristics of the... [Pg.106]

The product cystine is presumably formed in the recombination of two thiyl radicals. This free-radical model is suitable for formal treatment of the kinetic data however, it does not account for all possible reactions of the RS radical (68). The rate constants for the reactions of this species with RS-, 02 and Cu L, (n = 2, 3) are comparable, and on the order of 109-10loM-1s-1 (70-72). Because all of these reaction partners are present in relatively high and competitive concentrations, the recombination of the thiyl radical must be a relatively minor reaction compared to the other reaction paths even though it has a diffusion controlled rate constant. It follows that the RS radical is most likely involved in a series of side reactions producing various intermediates. In order to comply with the noted chemoselectivity, at some point these transient species should produce a common intermediate leading to the formation of cystine. [Pg.430]

The morphology of weathered feldspar surfaces, and the nature of the clay products, contradicts the protective-surface-layer hypothesis. The presence of etch pits implies a surface-controlled reaction, rather than a diffusion (transport) controlled reaction. Furthermore, the clay coating could not be "protective" in the sense of limiting diffusion. Finally, Holdren and Berner (11) demonstrated that so-called "parabolic kinetics" of feldspar dissolution were largely due to enhanced dissolution of fine particles. None of these findings, however, addressed the question of the apparent non-stoichiometric release of alkalis, alkaline earths, silica, and aluminum. This question has been approached both directly (e.g., XPS) and indirectly (e.g., material balance from solution data). [Pg.623]

The Sikarex safety calorimeter system and its application to determine the course of adiabatic self-heating processes, starting temperatures for self-heating reactions, time to explosion, kinetic data, and simulation of real processes, are discussed with examples [1], The Sedex (sensitive detection of exothermic processes) calorimeter uses a special oven to heat a variety of containers with sophisticated control and detection equipment, which permits several samples to be examined simultaneously [2]. The bench-scale heat-flow calorimeter is designed to provide data specifically oriented towards processing safety requirements, and a new computerised design... [Pg.29]

Use of medium-scale heat flow calorimeter for separate measurement of reaction heat removed via reaction vessel walls and via reflux condenser system, under fully realistic processing conditions, with data processing of the results is reported [2], More details are given elsewhere [3], A new computer controlled reaction calorimeter is described which has been developed for the laboratory study of all process aspects on 0.5-2 1 scale. It provides precise data on reaction kinetics, thermochemistry, and heat transfer. Its features are exemplified by a study of the (exothermic) nitration of benzaldehyde [4], A more recent review of reaction safety calorimetry gives some comment on possibly deceptive results. [5],... [Pg.368]


See other pages where Kinetically controlled reactions kinetic data is mentioned: [Pg.1933]    [Pg.72]    [Pg.368]    [Pg.1319]    [Pg.187]    [Pg.267]    [Pg.270]    [Pg.944]    [Pg.10]    [Pg.30]    [Pg.95]    [Pg.130]    [Pg.139]    [Pg.167]    [Pg.251]    [Pg.258]    [Pg.284]    [Pg.241]    [Pg.128]    [Pg.141]    [Pg.319]    [Pg.507]    [Pg.117]    [Pg.35]    [Pg.84]    [Pg.445]    [Pg.351]    [Pg.11]    [Pg.171]    [Pg.666]   
See also in sourсe #XX -- [ Pg.128 ]




SEARCH



Control Data

Kinetic controlled

Kinetic data reactions

Kinetic reaction control

Kinetically control

Kinetically controlled

Kinetically controlled reaction

Kinetically controlled reactions kinetics

Kinetics controlled reactions

Reaction data

© 2024 chempedia.info