Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic sulfonation reaction

Schmid et al. studied in detail the sulfonation reaction of fatty acid methyl esters with sulfur trioxide [37]. They measured the time dependency of the products formed during ester sulfonation. These measurements together with a mass balance confirmed the existence of an intermediate with two S03 groups in the molecule. To decide the way in which the intermediate is formed the measured time dependency of the products was compared with the complex kinetics of different mechanisms. Only the following two-step mechanism allowed a calculation of the measured data with a variation of the velocity constants in the kinetic differential equations. [Pg.466]

A long series of studies of aromatic nucleophilic substitution included the kinetics of reactions of l-chloro-2,4-bis(trifluoromethylsulfonyl)benzene, 3-nitro-4-chlorophenyl trifluoromethyl sulfone and 2-chlorophenyl trifluoromethyl sulfone with sodium methox-ide or ammonia in methanol . The SO2CF3 group was found to have an enormous accelerating effect, in accord with the value of 1.65, based on the dissociation of anilinium ion. Further examples of the promotion of nucleophilic aromatic substitution by fluoro-substituted sulfonyl groups are given by Yagupol skii and coworkers . [Pg.531]

A spectrophotometric method for determination of primary and secondary amines requires development for each particular compound, determining the kinetics of reaction of the amine with sodium l,2-naphthoquinone-4-sulfonate (143) and the UVV absorption spectrum of the product, under a set of fixed conditions. The procedure was applied to determination of ephedrine (30) and amphetamine (28) in pharmaceutical samples339. Reagent 143 in a FLA. system was used for the fast determination of lysine (144) in commercial feed samples by multivariate calibration techniques, without need of chromatographic separation340. [Pg.1097]

Sulfonation of naphthalene with concentrated sulfuric acid under kinetically controlled reaction conditions (at low temperature) produces predominantly naphthalene-l-sulfonic acid. Increasing the temperature to over 160 ""C greatly augments the proportion of naphthalene-2-sulfonic acid. [Pg.16]

This water, due to the dilution effect on the still unreacted sulfuric acid, causes the progressive loss of the latter s reactivity. This loss implies the necessity of continuous removal of the formed water or operating the process with excess of the sulfonating agent and eventually to separate, by physical settling, the weak-spent sulfuric acid that is not capable to comply with the desired sulfonation reaction kinetics anymore. [Pg.89]

Cycloadditions Interestingly, sulfur dioxide participated as a dienophile in the [4+2] cycloaddition reaction with 1,3-dienes. In this manner, sulfur dioxide reacts similarly to the related selenium dioxide and the other sulfur dienophiles RN=S=0, RN=S=NR and R2C=S=0 (sulfines). However, the [4+2] cycloadducts derived from 1,3-dienes and sulfur dioxide are only obtained at low temperatures (—80 °C) in a kinetically controlled reaction and the cycloaddition reactions often require the presence of a Lewis acid (CF3COOH or BF3). Above —50 °C the Diels-Alder adducts undergo a cycloreversion and a cheletropic addition of the generated sulfur dioxide to the diene occurs with formation of the corresponding 2,5-dihydrothiophene-1,1-dioxides (sulfolenes). According to ab-initio computations, electrostatic solvent effects are predicted to be of importance in the control of the selec-tivities in this reaction . From linear dienes, the [4+1] cycloadducts are usually obtained. For example, from 1,3-butadiene and SO2 at -20 °C, the cyclic sulfone 25 is obtained in 95% yield. ... [Pg.507]

The sulfonation of 2-tert-butylphenol with chlorosulfonic acid has been studied kinetically the reaction mixture was demonstrated to contain 13 acids (derivatives of phenol, 2-tert-butylphenol, 4-tert-butylphenol and 2,4-ditert-butylphenol). The majority of the reactions gave first order rate constants and the operation of a two-phase reaction mechanism was discussed with reference to direct sulfonation, sulfate ester rearrangement and ipso sulfonation. [Pg.66]

Cross-linked polystyrene film was sulfonated by treatment with a mixture of chlorosulfonic acid and anhydrous sulfuric acid (8 92) at 0 °C. The kinetics of the sulfonation reactions were determined the initial rate was slow, reached a... [Pg.250]

When unsubstituted, C-5 reacts with electrophilic reagents. Thus phosphorus pentachloride chlorinates the ring (36, 235). A hydroxy group in the 2-position activates the ring towards this reaction. 4-Methylthiazole does not react with bromine in chloroform (201, 236), whereas under the same conditions the 2-hydroxy analog reacts (55. 237-239. 557). Activation of C-5 works also for sulfonation (201. 236), nitration (201. 236. 237), Friede 1-Crafts reactions (201, 236, 237, 240-242), and acylation (243). However, iodination fails (201. 236). and the Gatterman or Reimer-Tieman reactions yield only small amounts of 4-methyl-5-carboxy-A-4-thiazoline-2-one. Recent kinetic investigations show that 2-thiazolones are nitrated via a free base mechanism. A 2-oxo substituent increases the rate of nitration at the 5-position by a factor of 9 log... [Pg.402]

The azo coupling reaction proceeds by the electrophilic aromatic substitution mechanism. In the case of 4-chlorobenzenediazonium compound with l-naphthol-4-sulfonic acid [84-87-7] the reaction is not base-catalyzed, but that with l-naphthol-3-sulfonic acid and 2-naphthol-8-sulfonic acid [92-40-0] is moderately and strongly base-catalyzed, respectively. The different rates of reaction agree with kinetic studies of hydrogen isotope effects in coupling components. The magnitude of the isotope effect increases with increased steric hindrance at the coupler reaction site. The addition of bases, even if pH is not changed, can affect the reaction rate. In polar aprotic media, reaction rate is different with alkyl-ammonium ions. Cationic, anionic, and nonionic surfactants can also influence the reaction rate (27). [Pg.428]

The kinetics of formation and hydrolysis of /-C H OCl have been investigated (262). The chemistry of alkyl hypochlorites, /-C H OCl in particular, has been extensively explored (247). /-Butyl hypochlorite reacts with a variety of olefins via a photoinduced radical chain process to give good yields of aUyflc chlorides (263). Steroid alcohols can be oxidized and chlorinated with /-C H OCl to give good yields of ketosteroids and chlorosteroids (264) (see Steroids). /-Butyl hypochlorite is a more satisfactory reagent than HOCl for /V-chlorination of amines (265). Sulfides are oxidized in excellent yields to sulfoxides without concomitant formation of sulfones (266). 2-Amino-1, 4-quinones are rapidly chlorinated at room temperature chlorination occurs specifically at the position adjacent to the amino group (267). Anhydropenicillin is converted almost quantitatively to its 6-methoxy derivative by /-C H OCl in methanol (268). Reaction of unsaturated hydroperoxides with /-C H OCl provides monocyclic and bicycHc chloroalkyl 1,2-dioxolanes. [Pg.475]

In the section dealing with electrophilic attack at carbon some results on indazole homocyclic reactivity were presented nitration at position 5 (Section 4.04.2.1.4(ii)), sulfon-ation at position 7 (Section 4.04.2.1.4(iii)) and bromination at positions 5 and 7 (Section 4.04.2.1.4(v)). The orientation depends on the nature (cationic, neutral or anionic) of the indazole. Protonation, for instance, deactivates the heterocycle and directs the attack towards the fused benzene ring. A careful study of the nitration of indazoles at positions 2, 3, 5 or 7 has been published by Habraken (7UOC3084) who described the synthesis of several dinitroindazoles (5,7 5,6 3,5 3,6 3,4 3,7). The kinetics of the nitration of indazole to form the 5-nitro derivative have been determined (72JCS(P2)632). The rate profile at acidities below 90% sulfuric acid shows that the reaction involves the conjugate acid of indazole. [Pg.259]

The relative stability of the intermediates determines the position of substitution under kinetically controlled conditions. For naphthalene, the preferred site for electrophilic attack is the 1-position. Two factors can result in substitution at the 2-position. If the electrophile is very bulky, the hydrogen on the adjacent ring may cause a steric preference for attack at C-2. Under conditions of reversible substitution, where relative thermodynamic stability is the controlling factor, 2-substitution is frequently preferred. An example of this behavior is in sulfonation, where low-temperature reaction gives the 1-isomer but at elevated temperatures the 2-isomer is formed. ... [Pg.568]

The importance of the solvent, in many cases an excess of the quatemizing reagent, in the formation of heterocyclic salts was recognized early. The function of dielectric constants and other more detailed influences on quatemization are dealt with in Section VI, but a consideration of the subject from a preparative standpoint is presented here. Methanol and ethanol are used frequently as solvents, and acetone,chloroform, acetonitrile, nitrobenzene, and dimethyl-formamide have been used successfully. The last two solvents were among those considered by Coleman and Fuoss in their search for a suitable solvent for kinetic experiments both solvents gave rise to side reactions when used for the reaction of pyridine with i-butyl bromide. Their observation with nitrobenzene is unexpected, and no other workers have reported difficulties. However, tetramethylene sulfone, 2,4-dimethylsulfolane, ethylene and propylene carbonates, and salicylaldehyde were satisfactory, giving relatively rapid reactions and clean products. Ethylene dichloride, used quite frequently for Friedel-Crafts reactions, would be expected to be a useful solvent but has only recently been used for quatemization reactions. ... [Pg.10]

Besides the azo coupling reactions of 1-methyl- and 2,5-dimethylpyrrole with benzenediazonium-4-sulfonate mentioned above, Butler et al. (1977) synthesized almost all possible combination products of the unsubstituted and four 4-substituted benzenediazonium ions with pyrrole itself, with most isomeric mono-, di-, and trimethyl-pyrroles, and with 3-ethyl-2,4-dimethylpyrrole. These authors also investigated the kinetics of all these combinations (see Sec. 12.7). [Pg.323]

Quantitative studies based on kinetic measurements using strongly electrophilic diazonium ions and, as coupling components, 1-naphthol, 2-naphthol-6-sulfonic acid, and resorcinol in aqueous acid were made by Sterba and coworkers (Kropacova et al., 1970 Kavalek et al., 1970 Sterba and Valter, 1972 Machackova et al., 1972a). In a typical case (2,6-dichloro-4-nitrobenzenediazonium ion and 1-naphthol) the dependence of the logarithm of the measured rate constant (ks) on pH was linear with a slope of 1. At pH < 1, however, a practically constant value of ks was obtained. The measured rate constants therefore correspond to Scheme 12-62, in which the first term relates to the reaction of the naphthoxide ion and the second to that of the undissociated naphthol Ka is the acidity constant of 1-naphthol. [Pg.348]

Bagal et al. (1975) investigated in more detail the role of donor-acceptor complexes in the azo coupling reaction of the 4-nitrobenzenediazonium ion with 2-naphthylamine-3,6-disulfonic acid and that of the 4-chlorobenzenediazonium ion with 2-naphthol-6-sulfonic acid. Their kinetic results are, as would be expected, compatible with the mechanisms shown in Schemes 12-74 or 12-75. [Pg.365]

In experiments with [sulfone]o = 3.15 x 10 5 M and excess N2H4, the reaction follows pseudo-first-order kinetics. Values of k vary with [N2H4]. Formulate the rate law and evaluate the constants therein ... [Pg.42]


See other pages where Kinetic sulfonation reaction is mentioned: [Pg.531]    [Pg.67]    [Pg.355]    [Pg.339]    [Pg.666]    [Pg.130]    [Pg.85]    [Pg.98]    [Pg.176]    [Pg.682]    [Pg.278]    [Pg.92]    [Pg.106]    [Pg.33]    [Pg.376]    [Pg.97]    [Pg.382]    [Pg.54]    [Pg.55]    [Pg.60]    [Pg.779]    [Pg.355]    [Pg.357]    [Pg.75]    [Pg.105]    [Pg.180]    [Pg.531]    [Pg.684]    [Pg.691]   
See also in sourсe #XX -- [ Pg.246 ]




SEARCH



Reaction sulfonates

Sulfonation reaction

© 2024 chempedia.info