Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface step process

Models used to describe the growth of crystals by layers call for a two-step process (/) formation of a two-dimensional nucleus on the surface and (2) spreading of the solute from the two-dimensional nucleus across the surface. The relative rates at which these two steps occur give rise to the mononuclear two-dimensional nucleation theory and the polynuclear two-dimensional nucleation theory. In the mononuclear two-dimensional nucleation theory, the surface nucleation step occurs at a finite rate, whereas the spreading across the surface is assumed to occur at an infinite rate. The reverse is tme for the polynuclear two-dimensional nucleation theory. Erom the mononuclear two-dimensional nucleation theory, growth is related to supersaturation by the equation. [Pg.344]

Coupling to a mineral surface requires the presence of active hydroxyls on the substrate. The coupling reaction is a multi-step process that proceeds from a state of physisorption through hydrogen bond formation to actual covalent bond formation through condensation of surface hydroxyls with silanols ... [Pg.435]

Another multiple-reaction irreversible surface reaction process is the dimer-monomer-monomer (DMM) model as proposed in Ref. 99. This model is suitable for investigating, on the one hand, the influence caused by dimer traces in the MM model, and on the other hand the effect of monomer traces in the ZGB model. In fact, the DMM model assumes the following reaction steps ... [Pg.425]

The behavior of Au faces in pH >7 solutions has been stud-ied.24,63,391 545 546 Surface oxide formation is a two-step process a peak at a less positive E has been explained by OH" specific adsorption24,63,188,391,485,547 that at a more positive E in terms of irreversible oxide formation by examining the negative moving i, E profile at various... [Pg.87]

The industrial process for which this methodology was developed comprised polymerizing a monomer in the presence of a mixed solvent, the catalyst and other Ingredients. Once the batch polymerization is complete, the product requires removal of the solvents to a specified level. The solvents, an aromatic Cy and aliphatic Cy compounds, are removed by a two-step process schematically shown in Figure 1. As shown, the polymer slurry is initially flashed to a lower pressure (Pj ) in the presence of steam and water. The freely available solvent in the polymer-solvent mixture is removed by the shift in thermodynamic equilibrium. Solvent attached to the surface of the polymer particle is removed by the steam. In this first step, 90% of the total solvents are recovered. The remaining solvents are recovered in the second flash, where the effluent is almost all water with very low concentrations of the solvents. [Pg.99]

Phenol is the starting material for numerous intermediates and finished products. About 90% of the worldwide production of phenol is by Hock process (cumene oxidation process) and the rest by toluene oxidation process. Both the commercial processes for phenol production are multi step processes and thereby inherently unclean [1]. Therefore, there is need for a cleaner production method for phenol, which is economically and environmentally viable. There is great interest amongst researchers to develop a new method for the synthesis of phenol in a one step process [2]. Activated carbon materials, which have large surface areas, have been used as adsorbents, catalysts and catalyst supports [3,4], Activated carbons also have favorable hydrophobicity/ hydrophilicity, which make them suitable for the benzene hydroxylation. Transition metals have been widely used as catalytically active materials for the oxidation/hydroxylation of various aromatic compounds. [Pg.277]

Two different methods were used to produce Iron oxide (Fe203) particles on Grafoll. One method was a simple Impregnation-calcination based on the method of Bartholomew and Boudart (20). The exact method used 1s described elsewhere (27). The second method used was a two step process. First, metallic iron particles were produced on the Grafoll surface via the thermal decomposition of Iron pentacarbonyl. This process Is also described in detail elsewhere (25). Next, the particles were exposed to air at room atmosphere and thus partially oxidized to 2 3 Following the production of Iron oxide particles (by... [Pg.522]

The crucial aspect is thus to determine the fate of the ( CHO), species. Possible mechanisms for its oxidative removal are schematically shown in Fig. 9. From this scheme, it appears that the desorption of the formyl species can follow different pathways through competitive reactions. This schematic illustrates the main problems and challenges in improving the kinetics of the electrooxidation of methanol. On a pure platinum surface, step (21) is spontaneously favored, since the formation of adsorbed CO is a fast process, even at low potentials. Thus, the coverage... [Pg.81]

There is a continuing interest to improve and extend the fimctional properties range of dairy proteins to provide both health benefits and their characteristic physical behaviors under different temperature, moisture, and pH conditions so that they may be included in foods that ordinarily do not contain them. One such research area is the extrusion texturization of whey proteins, which have resulted in dairy proteins with new characteristics imparted by a controlled texturization process, depending on the application desired (Hale et al., 2002 Manoi and Rizvi, 2008 Onwulata, 2009 Onwulata et al., 1998). Protein texturization is a two-step process that involves, first, the unfolding of the globular structure (denaturation) and, second, the alignments of the partially unfolded structures in the direction of mass flow in the extruder. The surface characteristics are imparted at the extruder die as the molten mass exits (Onwulata et al., 2003a). [Pg.178]

Nitric oxide is dissociatively chemisorbed at Ru(0001) at 295 K, with Zambelli et al.n establishing the role of a surface step in the dynamics of the dissociation process. Figure 8.3 shows an STM image taken 30min after exposure of the ruthenium surface to nitric oxide at 315 K. There is clearly a preponderance of dark features concentrated around the atomic step (black strip), which are disordered nitrogen adatoms, while the islands of black dots further away... [Pg.139]

Separations in hydrophobic interaction chromatography have been modeled as a function of the ionic strength of the buffer and of the hydrophobicity of the column, and tested using the elution of lysozyme and ovalbumin from octyl-, butyl- and phenyl-Sepharose phases.2 The theoretical framework used preferential interaction analysis, a theory competitive to solvophobic theory. Solvophobic theory views protein-surface interaction as a two-step process. In this model, the protein appears in a cavity in the water formed above the adsorption site and then adsorbs to the phase, with the free energy change... [Pg.129]

Peptide synthesis was amenable to solid-phase techniques since the process was repetitive. The C-terminal amino acid is attached to polymeric surface and the peptide chain is assembled via a two-step process coupling of the incoming amino acid that has the alpha-amino group protected... [Pg.181]

Hougen- Watson Models for Cases where Adsorption and Desorption Processes are the Rate Limiting Steps. When surface reaction processes are very rapid, the overall conversion rate may be limited by the rate at which adsorption of reactants or desorption of products takes place. Usually only one of the many species in a reaction mixture will not be in adsorptive equilibrium. This generalization will be taken as a basis for developing the expressions for overall conversion rates that apply when adsorption or desorption processes are rate limiting. In this treatment we will assume that chemical reaction equilibrium exists between various adsorbed species on the catalyst surface, even though reaction equilibrium will not prevail in the fluid phase. [Pg.187]

The second UHV-EC study of the first monolayers of CdTe on Au(lll) by this group is just being completed on Au(lll) [236]. Figure 67 is a series of graphs of the Cd/Te ratios from Auger electron spectroscopy, corrected for sensitivity factors, so the ratios are an approximation of the atomic ratios present on the surface. The graphs are a function of the potentials used to form the second atomic layer in the formation of CdTe monolayers in a two step process. [Pg.88]


See other pages where Surface step process is mentioned: [Pg.341]    [Pg.2625]    [Pg.405]    [Pg.540]    [Pg.138]    [Pg.279]    [Pg.975]    [Pg.202]    [Pg.518]    [Pg.1183]    [Pg.2]    [Pg.353]    [Pg.264]    [Pg.288]    [Pg.153]    [Pg.334]    [Pg.198]    [Pg.364]    [Pg.846]    [Pg.125]    [Pg.380]    [Pg.196]    [Pg.340]    [Pg.218]    [Pg.225]    [Pg.235]    [Pg.473]    [Pg.483]    [Pg.375]    [Pg.312]    [Pg.87]    [Pg.241]    [Pg.44]    [Pg.379]    [Pg.56]    [Pg.235]    [Pg.645]   
See also in sourсe #XX -- [ Pg.703 ]




SEARCH



Process steps

Stepped surfaces

Surface processed

Surface processes

Surface steps

© 2024 chempedia.info