Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linear kinetic model

Qualitative examples abound. Perfect crystals of sodium carbonate, sulfate, or phosphate may be kept for years without efflorescing, although if scratched, they begin to do so immediately. Too strongly heated or burned lime or plaster of Paris takes up the first traces of water only with difficulty. Reactions of this type tend to be autocat-alytic. The initial rate is slow, due to the absence of the necessary linear interface, but the rate accelerates as more and more product is formed. See Refs. 147-153 for other examples. Ruckenstein [154] has discussed a kinetic model based on nucleation theory. There is certainly evidence that patches of product may be present, as in the oxidation of Mo(lOO) surfaces [155], and that surface defects are important [156]. There may be catalysis thus reaction VII-27 is catalyzed by water vapor [157]. A topotactic reaction is one where the product or products retain the external crystalline shape of the reactant crystal [158]. More often, however, there is a complicated morphology with pitting, cracking, and pore formation, as with calcium carbonate [159]. [Pg.282]

The implicit-midpoint (IM) scheme differs from IE above in that it is symmetric and symplectic. It is also special in the sense that the transformation matrix for the model linear problem is unitary, partitioning kinetic and potential-energy components identically. Like IE, IM is also A-stable. IM is (herefore a more reasonable candidate for integration of conservative systems, and several researchers have explored such applications [58, 59, 60, 61]. [Pg.241]

Cropley made general recommendations to develop kinetic models for compUcated rate expressions. His approach includes first formulating a hyperbolic non-linear model in dimensionless form by linear statistical methods. This way, essential terms are identified and others are rejected, to reduce the number of unknown parameters. Only toward the end when model is reduced to the essential parts is non-linear estimation of parameters involved. His ten steps are summarized below. Their basis is a set of rate data measured in a recycle reactor using a sixteen experiment fractional factorial experimental design at two levels in five variables, with additional three repeated centerpoints. To these are added two outlier... [Pg.140]

The "add-to-memory" signal averaging method currently available to us distorts fluorescence intensity versus time plots when the fluorescence intensity is a non-linear function of incident laser energy and the laser energy varies from shot to shot. For this reason we have not attempted detailed kinetic modelling of the observed fluorescence intensity decay curves recorded at high 532 nm laser fluence. [Pg.166]

Statistical testing of model adequacy and significance of parameter estimates is a very important part of kinetic modelling. Only those models with a positive evaluation in statistical analysis should be applied in reactor scale-up. The statistical analysis presented below is restricted to linear regression and normal or Gaussian distribution of experimental errors. If the experimental error has a zero mean, constant variance and is independently distributed, its variance can be evaluated by dividing SSres by the number of degrees of freedom, i.e. [Pg.545]

This system displays a two-enzyme kinetic model in which bioconversion is controlled by the interaction between the two reactions and the mass transfer. This situation offers a more realistic model for the conditions occurring in vivo, in which some pathways of intermediary metabolism consist of linear sequences of reactions. These pathways take place in highly organized compartments. [Pg.575]

In algebraic equation models we also have the special situation of conditionally linear systems which arise quite often in engineering (e.g., chemical kinetic models, biological systems, etc.). In these models some of the parameters enter in a linear fashion, namely, the model is of the form,... [Pg.9]

This closure property is also inherent to a set of differential equations for arbitrary sequences Uk in macromolecules of linear copolymers as well as for analogous fragments in branched polymers. Hence, in principle, the kinetic method enables the determination of statistical characteristics of the chemical structure of noncyclic polymers, provided the Flory principle holds for all the chemical reactions involved in their synthesis. It is essential here that the Flory principle is meant not in its original version but in the extended one [2]. Hence under mathematical modeling the employment of the kinetic models of macro-molecular reactions where the violation of ideality is connected only with the short-range effects will not create new fundamental problems as compared with ideal models. [Pg.173]

WASP/TOXIWASP/WASTOX. The Water Quality Analysis Simulation Program (WASP, 3)is a generalized finite-difference code designed to accept user-specified kinetic models as subroutines. It can be applied to one, two, and three-dimensional descriptions of water bodies, and process models can be structured to include linear and non-linear kinetics. Two versions of WASP designed specifically for synthetic organic chemicals exist at this time. TOXIWASP (54) was developed at the Athens Environmental Research Laboratory of U.S. E.P.A. WASTOX (55) was developed at HydroQual, with participation from the group responsible for WASP. Both codes include process models for hydrolysis, biolysis, oxidations, volatilization, and photolysis. Both treat sorption/desorption as local equilibria. These codes allow the user to specify either constant or time-variable transport and reaction processes. [Pg.37]

Marcus AH. 1985b. Multicompartment kinetic models for lead II. Linear kinetics and variable absorption in humans without excessive lead exposure. Environ Res 36 459-472. [Pg.547]

We wish to conclude with a simple kinetic model that is compatible with the above picture and is based on the theory of continu um Zip-reactions (46,47). Let us assume random initiation at sites distributed at random along a chain followed by zip in both directions with speed v. If we denote by p the linear density of such... [Pg.182]

Mahaney, J. E., Thomas, D. D. and Froehlich, J. P. The time-dependent distribution of phosphorylated intermediates in native sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle is not compatible with a linear kinetic model. Biochemistry 43 4400-4416, 2004. [Pg.92]

The basic idea is very simple In many scenarios the construction of an explicit kinetic model of a metabolic pathway is not necessary. For example, as detailed in Section IX, to determine under which conditions a steady state loses its stability, only a local linear approximation of the system at this respective state is needed, that is, we only need to know the eigenvalues of the associated Jacobian matrix. Similar, a large number of other dynamic properties, including control coefficients or time-scale analysis, are accessible solely based on a local linear description of the system. [Pg.189]

J. E. Bailey and V. Hatzimanikatis, Effects of spatiotemporal variations on metabolic control Approximate analysis using (log)linear kinetic models. Biotechnol. Bioeng. (1997). [Pg.249]

The two-phase kinetic model developed by Karickhoff (65) is capable of fitting either the sorption or desorption of a sorbing solute. For linear isotherms, the mathematical description given by Karickhoff (1) and others (67, 70, 71) is virtually identical to that of a mass transfer process (72). [Pg.208]

The collection of kinetic modelling programs will be adapted in the subsequent chapter for the non-linear least-squares analysis of kinetic data and the determination of rate constants. [Pg.4]

In addition to the linear sensitivity coefficients described above, various other types of sensitivity coefficients have been studied to probe underlying relationships between input and output parameters of chemical kinetic models. These include higher-order coefficients, Green s function coefficients, derived coefficients, feature coefficients, and principal components. Their descriptions and applications can be found in the literature [22,23, 27, 28],... [Pg.65]


See other pages where Linear kinetic model is mentioned: [Pg.224]    [Pg.224]    [Pg.561]    [Pg.443]    [Pg.8]    [Pg.43]    [Pg.352]    [Pg.82]    [Pg.312]    [Pg.451]    [Pg.880]    [Pg.103]    [Pg.511]    [Pg.160]    [Pg.172]    [Pg.131]    [Pg.166]    [Pg.437]    [Pg.583]    [Pg.168]    [Pg.108]    [Pg.184]    [Pg.108]    [Pg.222]    [Pg.115]    [Pg.619]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



Kinetic Modeling of Linear Reversible Polycondensations

Kinetic modeling linear logarithmic kinetics

Linear kinetics

Linearized model

Model Linearity

Models linear model

Models linearization

© 2024 chempedia.info