Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kilogram defined

The limitations on the stability of the kilogram defined in terms of the international prototype could be eliminated if the kilogram were defined in terms of a... [Pg.30]

If one imagine.s that the fuel is used in the liquid state in the form of droplets —as in the case of fuel injection— the specific energy of the motor fuel (SE) is expressed in kilojoules per kilogram of air utilized, under predetermined conditions of equivalence ratio (stoichiometry for example). The SE is none other than the NHY /r quotient where r represents the previously defined stoichiometric ratio. [Pg.186]

There are a few basic numerical and experimental tools with which you must be familiar. Fundamental measurements in analytical chemistry, such as mass and volume, use base SI units, such as the kilogram (kg) and the liter (L). Other units, such as power, are defined in terms of these base units. When reporting measurements, we must be careful to include only those digits that are significant and to maintain the uncertainty implied by these significant figures when transforming measurements into results. [Pg.33]

Fine chemicals are generally considered chemicals that are manufactured to high and weU-defined standards of purity, as opposed to heavy chemicals made in large amounts to technical levels of purity. Fine chemicals usually are thought of as being produced on a small scale and the production of some fine chemicals is in tens or hundreds of kilograms per year. The production of others, especially fine chemicals used as dmgs or food additives (qv), is, however, in thousands of metric tons (see Pharmaceuticals). For example, the 1990 U.S. production of aspirin [50-78-2] and acetaminophen [103-90-2] was on the order of 20,500 t and 15,000 t, respectively. [Pg.444]

The viscosity ratio or relative viscosity, Tj p is the ratio of the viscosity of the polymer solution to the viscosity of the pure solvent. In capillary viscometer measurements, the relative viscosity (dimensionless) is the ratio of the flow time for the solution t to the flow time for the solvent /q (Table 2). The specific (sp) viscosity (dimensionless) is also defined in Table 2, as is the viscosity number or reduced (red) viscosity, which has the units of cubic meters per kilogram (m /kg) or deciUters per gram (dL/g). The logarithmic viscosity number or inherent (inh) viscosity likewise has the units m /kg or dL/g. For Tj g and Tj p, the concentration of polymer, is expressed in convenient units, traditionally g/100 cm but kg/m in SI units. The viscosity number and logarithmic viscosity number vary with concentration, but each can be extrapolated (Fig. 9) to zero concentration to give the limiting viscosity number (intrinsic viscosity) (Table 2). [Pg.170]

Each physical quantity is expressed in one and only one unit, eg, the meter for length, the kilogram for mass, and the second for time. Derived units are defined by simple equations relating two or more base units. Some are given special names, such as newton for force and joule for work and energy. [Pg.307]

The second term in brackets in equation 36 is the separative work produced per unit time, called the separative capacity of the cascade. It is a function only of the rates and concentrations of the separation task being performed, and its value can be calculated quite easily from a value balance about the cascade. The separative capacity, sometimes called the separative power, is a defined mathematical quantity. Its usefulness arises from the fact that it is directly proportional to the total flow in the cascade and, therefore, directly proportional to the amount of equipment required for the cascade, the power requirement of the cascade, and the cost of the cascade. The separative capacity can be calculated using either molar flows and mol fractions or mass flows and weight fractions. The common unit for measuring separative work is the separative work unit (SWU) which is obtained when the flows are measured in kilograms of uranium and the concentrations in weight fractions. [Pg.81]

Capacity Definitions In any analysis, the capacity per unit time of dynamic equipment (such as conveyors and bagging machines), as well as the rates at which they ac tuaUy perform, must be defined more precisely and realistically than by a mere statement of kilograms or pounds per hour. Some useful definitions employed by the equipment industi y are the following ... [Pg.1911]

Production of CFCs, halons, methyl chloroform, and CTC ceased at the end of 1995 in industrial countries and will cease by 2010 in developing countries. Developing countries are defined in the Protocol as those that use less than 0.3 kilograms (kg) of ODS per capita per year. These are called... [Pg.32]

Two systems of units are in common usage in mechanics. The first, the SI system, is an absolute system based on the fundamental quantities of space, time, and mass. All other quantities, including force, are derived. In the SI system the basic unit of mass is the kilogram (kg), the basic unit of length (space) is the meter (m), and the basic unit of time is tbe second (s). The derived unit of force is the Newton (N), which is defined as the force required to accelerate a mass of 1 kg at a rate of 1 m/s-. [Pg.139]

This is defined as the amount of heat liberated when unit volume (or unit mass) of the gas is burned at a standard temperature and pressure. It is usually expressed in terms of megajoules per cubic meter at 15°C and lOlbmbar, i.e. MJ/s m dry or megajoules per kilogram. Typical... [Pg.298]

Chlorinity When a sample of sea water is titrated with silver nitrate, bromides and iodides, as well as chlorides are precipitated. In calculating the chlorinity (Cl), the entire halogen content is taken as chloride, and chlorinity is defined as the weight in grams of silver required for precipitation of total halogen content per kilogram of sea water, multiplied by 0-328 533. (Chlorinity is always expressed as parts per thousand, using the symbol %o.)... [Pg.364]

The concentration unit molality, given the symbol m, is defined as the number of moles of solute per kilogram (1000 g) of solvent... [Pg.261]

The newton is defined as the force required to impart an acceleration of one meter per second squared to a mass of one kilogram. Recall that Newton s second law can be stated as... [Pg.635]

Molal boiling point constant, 269,270t Molal freezing point constant, 269,270t Molality (m) A concentration unit defined as the number of moles of solute per kilogram of solvent, 259,261-262 Molar mass The mass of one mole of a substance, 55,68-68q alcohol, 591 alkane, 591... [Pg.692]

For scientific work the fundamental standard of mass is the international prototype kilogram, which is a mass of platinum-iridium alloy made in 1887 and deposited in the International Bureau of Weights and Measures near Paris. Authentic copies of the standard are kept by the appropriate responsible authorities in the various countries of the world these copies are employed for the comparison of secondary standards, which are used in the calibration of weights for scientific work. The unit of mass that is almost universally employed in laboratory work, however, is the gram, which may be defined as the one-thousandth part of the mass of the international prototype kilogram. [Pg.75]

The IUPAC definition of pH39 is based upon a 0.05M solution of potassium hydrogenphthalate as the reference value pH standard (RVS). In addition, six further primary standard solutions are also defined which between them cover a range of pH values lying between 3.5 and 10.3 at room temperature, and these are further supplemented by a number of operational standard solutions which extend the pH range covered to 1.5-12.6 at room temperature. The composition of the RVS solution, of three of the primary standard solutions and of two of the operational standard solutions is detailed below, and their pH values at various temperatures are given in Table 15.4. It should be noted that the concentrations are expressed on a molal basis, i.e. moles of solute per kilogram of solution. [Pg.568]

Obesity is defined by the body mass index (BMI), measured as body weight in kilograms divided by the squared height in metres (kg/m2). A BMI of 30 or more is a commonly-used criterion for defining obesity and a BMI between 25 and 30 is considered overweight. [Pg.158]

The molality is the concentration of solute in moles per kilogram of solvent. Its value is independent of the temperature and is directly proportional to the numbers of solute and solvent molecules in the solution. To convert molarity to molality, we note that the former is defined in terms of the volume of the solution, so we convert that overall volume to the mass of solvent present. [Pg.449]

International System (SI) in terms of which all other units are defined. Examples kilogram for mass meter for length second for time kelvin for temperature ampere for electric current, basic ion An ion that acts as a Bronsted base. [Pg.942]

The strategies explored and defined in the various examples presented open a way for wider application of microwave chemistry in industry. The most important problem for chemists today (in particular, drug discovery chemists) is to scale-up microwave chemistry reactions for a large variety of synthetic reactions with minimal optimization of the procedures for scale-up. At the moment, there is a growing demand from industry to scale-up microwave-assisted chemical reactions, which is pushing the major suppliers of microwave reactors to develop new systems. In the next few years, these new systems will evolve to enable reproducible and routine kilogram-scale microwave-assisted synthesis. [Pg.77]

The density of seawater is controlled by its salt content or salinity and its temperature. Salinity is historically defined as the total salt content of seawater and the units were given as grams of salt per kilogram of seawater or parts per thousand (%o). Salinity was expressed on a mass of seawater basis because mass, rather than volume, is conserved as temperature and... [Pg.234]

For applications where the solution temperature changes, chemists prefer to use the molality, units of mol/kg). Molality is defined to be the number of moles of solute divided by the mass of solvent in kilograms. Moles of solute solute... [Pg.831]

The weight of atoms and their constituents can be given in kilograms. A proton, for example, weighs 1.67 x 10 kilograms, but its weight or mass can be expressed more conveniently in a measure called the atomic mass unit (amu). One amu is defined as 1/12 the mass of a carbon atom that consists of six protons. [Pg.34]

SI Units—The International System of Units as defined by the General Conference of Weights and Measures in 1960. These units are generally based on the meter/kilogram/second units, with special quantities for radiation including the becquerel, gray, and sievert. [Pg.284]

The saltiness of the ocean is defined in terms of salinity. In theory, this term is meant to represent the total number of grams of dissolved inorganic ions present in a kilogram of seawater. In practice, salinity is determined by measuring the conductivity of a sample and by calibration through empirical relationships to the International Association of Physical Sciences of the Ocean (IAPSO) Standard Sea Water. With this approach, salinity can be measured with a precision of at least 0.001 parts per thousand. This is fortunate, considering that 75% of all of the water in the ocean falls neatly between a salinity of 34 and 35. Obviously, these high-precision measurements are required to observe the small salinity variations in the ocean. [Pg.12]

Both molarity (Chap. 10) and normality (Chap. 15) are defined in terms of a volume. Since the volume is temperature-dependent, so are the molarity and normality of the solution. Two units of concentration that are independent of temperature are introduced in this chapter. Molality is defined as the number of moles of solute per kilogram of solvent in a solution. The symbol for molality is m. Note the differences between molality and molarity ... [Pg.245]


See other pages where Kilogram defined is mentioned: [Pg.741]    [Pg.741]    [Pg.173]    [Pg.20]    [Pg.265]    [Pg.307]    [Pg.160]    [Pg.1203]    [Pg.531]    [Pg.551]    [Pg.442]    [Pg.442]    [Pg.443]    [Pg.315]    [Pg.691]    [Pg.8]    [Pg.478]    [Pg.479]    [Pg.53]    [Pg.1531]    [Pg.9]    [Pg.245]    [Pg.499]    [Pg.179]    [Pg.363]   
See also in sourсe #XX -- [ Pg.9 , Pg.16 ]

See also in sourсe #XX -- [ Pg.9 , Pg.16 ]




SEARCH



Kilogram

© 2024 chempedia.info