Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones hydroperoxide oxidation

When C4H80 is diluted by water to 80 volume %, the only product of C4H80 oxidation is acetic acid (99% per methyl ethyl ketone reacted) formed by ketone hydroperoxide conversion. The reason for this increase in the reaction selectivity is that the rate of decomposition of the radical complex R02. . . HOH is lower than that of free R02, while the decrease in the rate of reaction of R02. . . HOH with methyl ethyl ketone is somewhat offset by the higher dielectric constant of the medium. [Pg.176]

Boric acid derivatives are reported to catalyse lactone formation from cyclic ketones using hydroperoxide oxidants.278... [Pg.127]

THERMACURE (1338-23-4) see methyl ethyl ketone hydroperoxide. THERMALOX (1304-56-9) see beryllium oxide. [Pg.1001]

Ketones do not react with most of the reagents used to oxidize aldehydes. However, both aldehydes and ketones can be oxidized by a peroxyacid. Aldehydes are oxidized to carboxylic acids and ketones are oxidized to esters. A peroxyacid (also called a per-carboxylic acid or an acyl hydroperoxide) contains one more oxygen than a carboxylic acid, and it is this oxygen that is inserted between the carbonyl carbon and the H of an aldehyde or the R of a ketone. The reaction is called a Baeyer-Villiger oxidation. [Pg.853]

Preliminary results of the reaction between vanadium(iii)-tetrasulpho-phthalocyanine complex with oxygen have been reported these data were compared with those obtained for the corresponding reaction of the hexa-aquo complex ion. The oxidation of methyl ethyl ketone by oxygen in the presence of Mn"-phenanthroline complexes has been studied Mn " complexes were detected as intermediates in the reaction and the enolic form of the ketone hydroperoxide decomposed in a free-radical mechanism. In the oxidation of 1,3,5-trimethylcyclohexane, transition-metal [Cu", Co", Ni", and Fe"] laurates act as catalysts and whereas in the absence of these complexes there is pronounced hydroperoxide formation, this falls to a low stationary concentration in the presence of these species, the assumption being made that a metal-hydroperoxide complex is the initiator in the radical reaction. In the case of nickel, the presence of such hydroperoxides is considered to stabilise the Ni"02 complex. Ruthenium(i) chloride complexes in dimethylacetamide are active hydrogenation catalysts for olefinic substrates but in the presence of oxygen, the metal ion is oxidised to ruthenium(m), the reaction proceeding stoicheiometrically. Rhodium(i) carbonyl halides have also been shown to catalyse the oxidation of carbon monoxide to carbon dioxide under acidic conditions ... [Pg.99]

The determination of peroxides has two goals one is to monitor peroxide concentration used as initiator and catalysts and the other is to detect formation of hazardous peroxides formed as autoxidation products in ethers, acetals, dienes, and alkylaromatic hydrocarbons. A sample is dissolved in a mixture of acetic acid and chloroform. The solution is deaerated and potassium iodide reagent is added and let to react for 1 h in darkness. The iodine formed in reaction is measured by absorbance at 470 nm and result calculated to active oxygen in the sample. The method can determine hydroperoxides, peroxides, peresters, and ketone peroxides. Oxidizing and reducing agents interfere with flic determination. [Pg.1065]

The CDT is then hydrogenated and further oxidized at 150°C to cyclododecanol and cyclododecanone with oxygen from the air. In this reaction, up to 5% ketone hydroperoxide occurs, which can be decomposed to form cyclododecanol, cyclododecanone, and dicarboxylic acid. These undesired reactions can be prevented by adding boric acid, which is present as polyboric acid at this temperature. The peroxide probably forms an adduct with the polyboric acid, and the course of this reaction is not yet fully understood. The cyclododecanone is changed to lauryl lactam via the oxime in the usual way (cf. nylon 6). [Pg.1000]

Alkyl hydroperoxides oxidize some sugar alcohols to the corresponding ketones under molybdenum-salt catalysis. Ruthenium tetroxide oxidizes secondary alcohols to ketones in neutral or basic media permitting, under the latter conditions, direct conversion of y-lactones into y-ketoacids. ... [Pg.125]

In terms of stabilisation against discolouration, primary phenolic antioxidants exhibit some inhibition activity whereas combinations with phosphites can display powerful synergism. This is consistent with the involvement of a free radical oxidation process in deacetylation through ketone/hydroperoxide initiation. [Pg.83]

In contrast to oxidation in water, it has been found that 1-alkenes are directly oxidized with molecular oxygen in anhydrous, aprotic solvents, when a catalyst system of PdCl2(MeCN)2 and CuCl is used together with HMPA. In the absence of HMPA, no reaction takes place(100]. In the oxidation of 1-decene, the Oj uptake correlates with the amount of 2-decanone formed, and up to 0.5 mol of O2 is consumed for the production of 1 mol of the ketone. This result shows that both O atoms of molecular oxygen are incorporated into the product, and a bimetallic Pd(II) hydroperoxide coupled with a Cu salt is involved in oxidation of this type, and that the well known redox catalysis of PdXi and CuX is not always operalive[10 ]. The oxidation under anhydrous conditions is unique in terms of the regioselective formation of aldehyde 59 from X-allyl-A -methylbenzamide (58), whereas the use of aqueous DME results in the predominant formation of the methyl ketone 60. Similar results are obtained with allylic acetates and allylic carbonates[102]. The complete reversal of the regioselectivity in PdCli-catalyzed oxidation of alkenes is remarkable. [Pg.30]

Oxidation begins with the breakdown of hydroperoxides and the formation of free radicals. These reactive peroxy radicals initiate a chain reaction that propagates the breakdown of hydroperoxides into aldehydes (qv), ketones (qv), alcohols, and hydrocarbons (qv). These breakdown products make an oxidized product organoleptically unacceptable. Antioxidants work by donating a hydrogen atom to the reactive peroxide radical, ending the chain reaction (17). [Pg.436]

Usually, organoboranes are sensitive to oxygen. Simple trialkylboranes are spontaneously flammable in contact with air. Nevertheless, under carefully controlled conditions the reaction of organoboranes with oxygen can be used for the preparation of alcohols or alkyl hydroperoxides (228,229). Aldehydes are produced by oxidation of primary alkylboranes with pyridinium chi orochrom ate (188). Chromic acid at pH < 3 transforms secondary alkyl and cycloalkylboranes into ketones pyridinium chi orochrom ate can also be used (230,231). A convenient procedure for the direct conversion of terminal alkenes into carboxyUc acids employs hydroboration with dibromoborane—dimethyl sulfide and oxidation of the intermediate alkyldibromoborane with chromium trioxide in 90% aqueous acetic acid (232,233). [Pg.315]

Earlier reports have indicated that esters can form before significant amounts of acids accumulate (16). The Bayer-ViUiger oxidations of ketones with intermediate hydroperoxides and/or peracids have been suggested as ester forming mechanisms (34,56). However, the reactions of simple aUphatic ketones with peracetic acid are probably too slow to support this mechanism (57,58). Very early proposals for ester formation, although imaginative, appear improbable (59). [Pg.337]

Reactions 33 and 35 constitute the two principal reactions of alkyl hydroperoxides with metal complexes and are the most common pathway for catalysis of LPOs (2). Both manganese and cobalt are especially effective in these reactions. There is extensive evidence that the oxidation of intermediate ketones is enhanced by a manganese catalyst, probably through an enol mechanism (34,96,183—185). [Pg.343]

Chromium compounds decompose primary and secondary hydroperoxides to the corresponding carbonyl compounds, both homogeneously and heterogeneously (187—191). The mechanism of chromium catalyst interaction with hydroperoxides may involve generation of hexavalent chromium in the form of an alkyl chromate, which decomposes heterolyticaHy to give ketone (192). The oxidation of alcohol intermediates may also proceed through chromate ester intermediates (193). Therefore, chromium catalysis tends to increase the ketone alcohol ratio in the product (194,195). [Pg.343]

Derivative Formation. Hydrogen peroxide is an important reagent in the manufacture of organic peroxides, including tert-huty hydroperoxide, benzoyl peroxide, peroxyacetic acid, esters such as tert-huty peroxyacetate, and ketone derivatives such as methyl ethyl ketone peroxide. These are used as polymerization catalysts, cross-linking agents, and oxidants (see Peroxides and peroxide compounds). [Pg.481]

Eithei oxidation state of a transition metal (Fe, Mn, V, Cu, Co, etc) can activate decomposition of the hydiopeioxide. Thus a small amount of tiansition-metal ion can decompose a laige amount of hydiopeioxide. Trace transition-metal contamination of hydroperoxides is known to cause violent decompositions. Because of this fact, transition-metal promoters should never be premixed with the hydroperoxide. Trace contamination of hydroperoxides (and ketone peroxides) with transition metals or their salts must be avoided. [Pg.228]

Oxidation. Olefins in general can be oxidized by a variety of reagents ranging from oxygen itself to ozone (qv), hydroperoxides, nitric acid (qv), etc. In some sequences, oxidation is carried out to create a stable product such as 1,2-diols or glycols, aldehydes, ketones, or carboxyUc acids. In other... [Pg.436]


See other pages where Ketones hydroperoxide oxidation is mentioned: [Pg.1052]    [Pg.1470]    [Pg.1443]    [Pg.1175]    [Pg.362]    [Pg.159]    [Pg.220]    [Pg.368]    [Pg.706]    [Pg.937]    [Pg.782]    [Pg.409]    [Pg.31]    [Pg.381]    [Pg.679]    [Pg.86]    [Pg.184]    [Pg.277]    [Pg.28]    [Pg.65]    [Pg.241]    [Pg.103]    [Pg.103]    [Pg.132]    [Pg.352]    [Pg.73]   
See also in sourсe #XX -- [ Pg.692 ]




SEARCH



Hydroperoxides oxidation

Ketones oxidant

Ketones oxidation

Oxidative ketones

Oxidative ketonization

© 2024 chempedia.info