Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketone Aldol, enantioselective

This chapter deals mainly with the 1,3-dipolar cycloaddition reactions of three 1,3-dipoles azomethine ylides, nitrile oxides, and nitrones. These three have been relatively well investigated, and examples of external reagent-mediated stereocontrolled cycloadditions of other 1,3-dipoles are quite limited. Both nitrile oxides and nitrones are 1,3-dipoles whose cycloaddition reactions with alkene dipolarophiles produce 2-isoxazolines and isoxazolidines, their dihydro derivatives. These two heterocycles have long been used as intermediates in a variety of synthetic applications because their rich functionality. When subjected to reductive cleavage of the N—O bonds of these heterocycles, for example, important building blocks such as p-hydroxy ketones (aldols), a,p-unsaturated ketones, y-amino alcohols, and so on are produced (7-12). Stereocontrolled and/or enantiocontrolled cycloadditions of nitrones are the most widely developed (6,13). Examples of enantioselective Lewis acid catalyzed 1,3-dipolar cycloadditions are summarized by J0rgensen in Chapter 12 of this book, and will not be discussed further here. [Pg.757]

Some systems of different structure have shown their ability to catalyze the formation of a new carbon-carbon bond by reaction of two ketones. The enantioselective aldol reaction between 1,3-cyclohexanedione (173) and different a-bromoketo esters 174 followed by final cyclization gave as the main compound cw-configured 176. Several Cinchona alkaloid derivatives were tested in this transformation, with the dimeric catalyst system 175 in the presence of a proton sponge and an ammonium salt affording the best results (Scheme 4.37) [256], Also dimeric cinchona... [Pg.308]

Although several groups found that simple proUne is not a useful catalyst under aqueous conditions, under specific, wet, conditions simple proline is able to catalyze aldehyde-aldehyde and aldehyde-ketone aldol reactions enantioselectively (aldols 17-20, Figure 24.7). Wet conditions required the use of 30mol% of proline and 3-3.8 equivalents of water [41]. [Pg.682]

The Pictet-Spengler condensation has been of vital importance in the synthesis of numerous P-carboline and isoquinoline compounds in addition to its use in the formation of alkaloid natural products of complex structure. A tandem retro-aldol and Pictet-Spengler sequence was utilized in a concise and enantioselective synthesis of 18-pseudoyohimbone. Amine 49 cyclized under acidic conditions to give the condensation product 50 in good yield. Deprotection of the ketone produced the indole alkaloid 51. [Pg.476]

The (acyloxy)borane complex 9, readily available from tartaric acid derivative 8, also catalyzes aldol additions of silyl enol ethers34 and silylketene acetals3 5 in an enantioselective manner. Thus,. u -ketones 10 and /Thydroxy esters 12 are available34, as well as a-unsubstituted ketones 1135. [Pg.582]

Since the first reported directed aldol condensation using lithiated imines1. few methods concerning the diastereo- and enantioselectivity of their addition to aldehydes and ketones have been published. [Pg.599]

Metalated SAMP- or RAMP-hydrazones derived from alkyl- or arylethyl ketones 3 add to arylaldehydes both diastereo- and enantioselectively. Substituted / -hydroxy ketones with relative syn configuration of the major diastereomer are obtained with de 51-80% and 70-80% ee. However, recrystallization of the aldol adducts, followed by ozonolysis, furnishes diastereo- and enantiomerically pure (lS, S )-. yn-a-mcthyl-/3-hydroxy ketones 5 in 36-51% overall yield. The absolute configuration of the aldol adducts was established by X-ray crystallographic analysis. Starting from the SAMP- or RAMP-hydrazone either enantiomer, (S,S) or (R,R), is available using this methodology16. [Pg.607]

The detailed mechanism of this enantioselective transformation remains under investigation.178 It is known that the acidic carboxylic group is crucial, and the cyclization is believed to occur via the enamine derived from the catalyst and the exocyclic ketone. A computational study suggested that the proton transfer occurs through a TS very similar to that described for the proline-catalyzed aldol reaction (see page 132).179... [Pg.139]

As practiced in the preceding syntheses by Evans and Nishiyama and Yamamura, the A-ring fragment 43 is formed through substrate-directed vinylogous aldol reaction of the Brassard-type diene 19 and the chiral aldehyde 42, which is prepared using Brown s protocols for enantioselective allylation [53], followed by hydroxy-directed nnn-diastereoselective reduction of the C3 ketone (Me4NB(OAc)3H) [41],... [Pg.114]

Shibasaki et al. also developed catalytic reactions of copper, some of which can be applied to catalytic asymmetric reactions. Catalytic aldol reactions of silicon enolates to ketones proceed using catalytic amounts of CuF (2.5 mol%) and a stoichiometric amount of (EtO)3SiF (120 mol%) (Scheme 104).500 Enantioselective alkenylation catalyzed by a complex derived from CuF and a chiral diphosphine ligand 237 is shown in Scheme 105.501 Catalytic cyanomethyla-tion by using TMSCH2CN was also reported, as shown in Scheme 106.502... [Pg.475]

Reaction of aldehydes and 2 equivalents of ketone in the presence of 5 mol% of (R)-BaBM gives good yield of aldol product (77-99%) with moderate enan-tioselectivity (54-70% ee) after a 2-day reaction (Scheme 3-36 and Table 3-9). Although the enantioselectivity is not very high, this is one of the first examples of direct aldol condensation using barium catalyst as the promoter. [Pg.164]

A further step towards improved selectivity in aldol condensations is found in the work of David A. Evans. The work of Evans [3a] [14] is based in some early observations from Meyers laboratory [15] and the fact that boron enolates may be readily prepared under mild conditions from ketones and dialkylboron triflates [16]. Detailed investigations with Al-propionylpyrrolidine (31) indicate that the enolisation process (LDA, THE) affords the enolate 32 with at least 97% (Z>diastereoselection (Scheme 9.8). Finally, the observation that the inclusion of potential chelating centres enhance aldol diastereoselection led Evans to study the boron enolates 34 of A(-acyl-2-oxazolidones (33), which allow not only great diastereoselectivity (favouring the 5yn-isomer) in aldol condensations, but offer a possible solution to the problem of enantioselective total syntheses (with selectivities greater than 98%) of complex organic molecules (see below, 9.3.2), by using a recyclisable chiral auxiliary. [Pg.239]

Marhwald reported that ligand exchange of Ti(rac-BINOLate)(Of-Bu)2 with optically active a-hydroxy acids presents an unexpected and novel approach to enantio-selective direct aldol reactions of aldehydes and ketones (Scheme 12.19). The aldol products have been isolated with a high degree of syn diastereoselectivity. High enantioselectivities have been observed when using simple optically pure a-hydroxy acids. [Pg.372]

Trost s group reported direct catalytic enantioselective aldol reaction of unmodified ketones using dinuclear Zn complex 21 [Eq. (13.10)]. This reaction is noteworthy because products from linear aliphatic aldehydes were also obtained in reasonable chemical yields and enantioselectivity, in addition to secondary and tertiary alkyl-substituted aldehydes. Primary alkyl-substituted aldehydes are normally problematic substrates for direct aldol reaction because self-aldol condensation of the aldehydes complicates the reaction. Bifunctional Zn catalysis 22 was proposed, in which one Zn atom acts as a Lewis acid to activate an aldehyde and the other Zn-alkoxide acts as a Bronsted base to generate a Zn-enolate. The... [Pg.389]

This chemistry was extended to a catalytic enantioselective alkenylation and phenylation of aldehydes and a-ketoesters. Using CuF-DTBM-SEGPHOS complex, products were obtained with excellent enantioselectivity from a wide range of aldehydes including aromatic and aliphatic aldehdyes, [Eq. (13.26)]. Previously catalytic enantioselective vinylation and phenylation are restricted using the corresponding zinc reagents. The active nucleophile is proposed to be an alkenyl or phenyl copper, based on NMR studies. The chiral CuF catalyst can also be applied to a catalytic enantioselective aldol reaction to ketones... [Pg.397]

Typical starting materials, catalysts, and products of the enamine-catalyzed aldol reaction are summarized in Scheme 17. In proline-catalyzed aldol reactions, enantioselectivities are good to excellent with selected cyclic ketones, such as cyclohexanone and 4-thianone, but generally lower with acetone. Hindered aldehyde acceptors, such as isobutyraldehyde and pivalaldehyde, afford high enantioselectivities even with acetone. In general, the reactions are anti selective, but there are aheady a number of examples of syn selective enamine aldol processes [200, 201] (Schemes 17 and 18, see below). However, syn selective aldol reactions are still rare, especially with cychc ketones. [Pg.44]

Ketone donors bearing a-heteroatoms are particularly useful donors for the enamine-catalyzed aldol reactions (Scheme 18). Both anti and syn aldol products can be accessed in remarkably high enantioselectivities using either proline or proline-derived amide, sulfonamide, or peptide catalysts. The syn selective variant of this reaction was discovered by Barbas [179]. Very recently, Luo and Cheng have also described a syn selective variant with dihydroxyacetone donors [201], and the Barbas group has developed improved threonine-derived catalysts 71 (Scheme 18) for syn selective reactions with both protected and unprotected dihydroxyacetone [202]. [Pg.45]

Enamine nucleophiles react readily with soft conjugated electrophiles, such as a, 3-unsaturated carbonyl, nitro, and sulfonyl compounds [20-22], Both aldehydes and ketones can be used as donors (Schemes 27 and 28). These Michael-type reactions are highly useful for the construction of carbon skeletons and often the yields are very high. The problem, however, is the enantioselectivity of the process. Unlike the aldol and Mannich reactions, where even simple proline catalyst can effectively direct the addition to the C = O or C = N bond by its carboxylic acid moiety, in conjugate additions the charge develops further away from the catalyst (Scheme 26) ... [Pg.54]


See other pages where Ketone Aldol, enantioselective is mentioned: [Pg.286]    [Pg.335]    [Pg.286]    [Pg.596]    [Pg.247]    [Pg.74]    [Pg.1222]    [Pg.314]    [Pg.1337]    [Pg.136]    [Pg.137]    [Pg.138]    [Pg.415]    [Pg.110]    [Pg.170]    [Pg.103]    [Pg.518]    [Pg.109]    [Pg.938]    [Pg.528]    [Pg.339]    [Pg.327]    [Pg.327]    [Pg.386]    [Pg.387]    [Pg.388]    [Pg.395]    [Pg.147]   
See also in sourсe #XX -- [ Pg.3 , Pg.79 , Pg.80 , Pg.83 , Pg.86 , Pg.103 ]




SEARCH



Aldol enantioselective

Aldol ketones

Aldolization enantioselective

Ketones enantioselective

© 2024 chempedia.info