Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselective Lewis-acid-catalyzed

Liu et al. 43) prepared chiral BINOL ligands bearing dendritic Frechet-type polybenzyl ether wedges ((J )-41-(J )-44), which were assessed in enantioselective Lewis acid-catalyzed addition of Et2Zn to benzaldehyde. [Pg.109]

This chapter deals mainly with the 1,3-dipolar cycloaddition reactions of three 1,3-dipoles azomethine ylides, nitrile oxides, and nitrones. These three have been relatively well investigated, and examples of external reagent-mediated stereocontrolled cycloadditions of other 1,3-dipoles are quite limited. Both nitrile oxides and nitrones are 1,3-dipoles whose cycloaddition reactions with alkene dipolarophiles produce 2-isoxazolines and isoxazolidines, their dihydro derivatives. These two heterocycles have long been used as intermediates in a variety of synthetic applications because their rich functionality. When subjected to reductive cleavage of the N—O bonds of these heterocycles, for example, important building blocks such as p-hydroxy ketones (aldols), a,p-unsaturated ketones, y-amino alcohols, and so on are produced (7-12). Stereocontrolled and/or enantiocontrolled cycloadditions of nitrones are the most widely developed (6,13). Examples of enantioselective Lewis acid catalyzed 1,3-dipolar cycloadditions are summarized by J0rgensen in Chapter 12 of this book, and will not be discussed further here. [Pg.757]

Corey, E. J., Lee, T. W. The formyl C-H...O hydrogen bond as a critical factor in enantioselective Lewis-acid catalyzed reactions of aldehydes. Chem. Commun. 2001,1321-1329. [Pg.612]

Most recent research has been focused on the application of polymers as chiral auxiliaries in enantioselective Lewis-acid-catalyzed reactions. Studies of Itsuno and co-workers [44] culminated in the development of a polymer-supported catalyst containing a chiral oxazaborolidinone with oxyethylene crosslinkages which gave the Diels-Alder adduct of cyclopentadiene and methacrolein in 88 % isolated yield with an exotendo ratio of 96 4 and 95 % e. e. for the exo adduct. A variety of polymer-supported chiral Lewis acids was also investigated by Mayoral et al. [45]. Some supported catalysts were more active than their homogeneous analogs, but enantioselectivity was always lower. [Pg.291]

Table 14. Enantioselective Lewis acid catalyzed hoinoaldol reactions [Table to Eq. (91)]... Table 14. Enantioselective Lewis acid catalyzed hoinoaldol reactions [Table to Eq. (91)]...
A majority of the reported enantioselective Lewis acid-catalyzed allylation processes employ complexes with chiral ligands based on the 1,1-binaphthyl skeleton. In 1993, Umani-Ronchi and Tagliavini [122] and Keck [123] independently reported enantioselective allylation of aldehydes with BINOL-Ti(IV) catalysts 195 (from BINOL/TiCl2(Oi-Pr)2) and 196 (from BINOL/ Ti(Oi-Pr)4), respectively (Equation 13). Excellent enantioselectivity was observed with both catalyst systems ( 90% ee). [Pg.177]

Associated to copper(II) pre-catalysts, bis(oxazolines) also allowed the asymmetric Diels-Alder and hetero Diels-Alder transformations to be achieved in nearly quantitative yield and high diastereo- and enantioselectivities. Optically active sulfoximines, with their nitrogen-coordinating site located at close proximity to the stereogenic sulfur atom, have also proven their efficiency as copper ligands for these asymmetric cycloadditions. Other precursors for this Lewis acid-catalyzed transformation have been described (e.g., zinc salts, ruthenium derivatives, or rare earth complexes) which, when associated to bis(oxazolines), pyridine-oxazolines or pyridine-bis(oxazolines), led to efficient catalysts. [Pg.94]

Zeijden [112] used chiral M-functionalized cyclopentadiene ligands to prepare a series of transition metal complexes. The zirconium derivative (82 in Scheme 46), as a moderate Lewis acid, catalyzed the Diels-Alder reaction between methacroleine and cyclopentadiene, with 72% de but no measurable enantiomeric excess. Nakagawa [113] reported l,T-(2,2 -bis-acylamino)binaphthalene (83 in Scheme 46) to be effective in the ytterbium-catalyzed asymmetric Diels-Alder reaction between cyclopentadiene and crotonyl-l,3-oxazolidin-2-one. The adduct was obtained with high yield and enantioselectivity (97% yield, endo/exo = 91/9, > 98% ee for the endo adduct). The addition of diisopropylethylamine was necessary to afford high enantioselectivities, since without this additive, the product was essentially... [Pg.129]

The highly ordered cyclic TS of the D-A reaction permits design of diastereo-or enantioselective reactions. (See Section 2.4 of Part A to review the principles of diastereoselectivity and enantioselectivity.) One way to achieve this is to install a chiral auxiliary.80 The cycloaddition proceeds to give two diastereomeric products that can be separated and purified. Because of the lower temperature required and the greater stereoselectivity observed in Lewis acid-catalyzed reactions, the best diastereoselectivity is observed in catalyzed reactions. Several chiral auxiliaries that are capable of high levels of diastereoselectivity have been developed. Chiral esters and amides of acrylic acid are particularly useful because the auxiliary can be recovered by hydrolysis of the purified adduct to give the enantiomerically pure carboxylic acid. Early examples involved acryloyl esters of chiral alcohols, including lactates and mandelates. Esters of the lactone of 2,4-dihydroxy-3,3-dimethylbutanoic acid (pantolactone) have also proven useful. [Pg.499]

Lewis acid-catalyzed additions can be carried out in the presence of other chiral ligands that induce enantioselectivity.156 Titanium TADDOL induces enantioselectivity in alkylzinc additions to aldehydes. A variety of aromatic, alkyl, and a, (3-unsaturated aldehydes give good results with primary alkylzinc reagents.157... [Pg.656]

This method has been applied in the enantioselective synthesis of d-erythro-sphingosine and phytosphingosine. Sphingosine became an important substance for studying signal transduction since the discovery of protein kinase C inhibition by this compound.48 Many efforts have been made to synthesize sphingosine and its derivatives.49 Kobayashi et al. reported another route to this type of compound in which a Lewis acid-catalyzed asymmetric aldol reaction was a key step. [Pg.158]

The catalytic asymmetric aldol reaction has been applied to the LASC system, which uses copper bis(-dodecyl sulfate) (4b) instead of CufOTf. 1261 An example is shown in Eq. 6. In this case, a Bronsted add, such as lauric add, is necessary to obtain a good yield and enantioseledivity. This example is the first one involving Lewis acid-catalyzed asymmetric aldol reactions in water without using organic solvents. Although the yield and the selectivity are still not yet optimized, it should be noted that this appredable enantioselectivity has been attained at ambient temperature in water. [Pg.10]

S. Otto, G. Boccaletti, J. B. F. N. Engberts, A Chiral Lewis-Acid-Catalyzed Diels-Alder Reaction. Water-Enhanced Enantioselectivity J. Am. Chem. Soc 1998, 120, 4238-4239. [Pg.13]

A more versatile method to use organic polymers in enantioselective catalysis is to employ these as catalytic supports for chiral ligands. This approach has been primarily applied in reactions as asymmetric hydrogenation of prochiral alkenes, asymmetric reduction of ketone and 1,2-additions to carbonyl groups. Later work has included additional studies dealing with Lewis acid-catalyzed Diels-Alder reactions, asymmetric epoxidation, and asymmetric dihydroxylation reactions. Enantioselective catalysis using polymer-supported catalysts is covered rather recently in a review by Bergbreiter [257],... [Pg.519]

DOLate was formed which was tested in the Lewis acid catalyzed enantioselective addition of diethylzinc to benzaldehyde. The authors note that the catalyst can be recovered by simple filtration and was active for at least more than twenty runs (refer also to Section 4.2.3) [102]. [Pg.221]

Lewis acid-catalyzed cycloaddihon is also a powerful synthehc method, and various types of cycloaddihon have been reported. In parhcular, enantioselective variants using chiral Lewis acids have been comprehensively studied some of these were used as key reactions for natural product syntheses [5]. However, they generally require one or more heteroatoms in the substrates, such as enones or enoates, to which (chiral) Lewis acids can coordinate. In conhast, in the case of transition-metal-catalyzed cycloadditions, the metals coordinate direchy to the tt-electron and activate unsaturated motifs, which means that the heteroatom(s) are unnecessary. Moreover, the direct coordinahon to the reachon site can realize highly enantioselechve reachon using chiral transihon-metal complexes. [Pg.277]

Chiral base catalysis was classified into five sections and reviewed. Although the reactions described herein are promoted by Bronsted or Lewis bases, the Lewis acidic characteristics of metals play important roles in both substrate activation and enantioselection. Compared with chiral Lewis acid-catalyzed reactions,... [Pg.404]

Several methods for the anti-selective, asymmetric aldol reaction recorded in the literature include (i) the use of boron, titanium, or tin(ll) enolate carrying chiral ligands, (ii) Lewis acid-catalyzed aldol reactions of a metal enolate of chiral carbonyl compounds, and (iii) the use of the metal enolate derived from a chiral carbonyl compound. Although many of these methods provide anti-aldols with high enantioselectivities, these methods are not as convenient or widely applicable as the method reported here, because of problems associated with the availability of reagents, the generality of reactions, or the required reaction conditions. [Pg.61]

Stoichiometric amount of methyl aluminum p-binaphthoxide as the Lewis acid. This reaction has recently been extended to a catalytic enantioselective version using an enantiopure methylaluminum p-binaphthoxide (Scheme 11.59) (210,211). Although the actual reacting species were not assigned, 5-alkoxyoxazoles behave as nitrile ylide 1,3-dipole equivalents in Lewis acid catalyzed reactions with aldehydes. [Pg.807]

Chiral titanium complexes with a, a, a, a -tetraaryl-l,3-dioxolane-4,5-dimethanol (TADDOL) ligands are versatile auxiliaries in the Lewis acid catalyzed alcoholysis of racemic 4-(arylmethyl)-2-phenyl-5(477)-oxazolones 234, providing the corresponding enantiomerically enriched N-protected amino acid esters 235 (Scheme 7.73). The enantioselectivity of the reaction is dependent on the solvent, temperature, and chiral ligand. Selected examples of the alcoholysis of saturated 5(477)-oxazolones are shown in Table 7.21 (Fig. 7.23). [Pg.180]

A formal asymmetric nucleophilic addition to carbonyl compounds is achieved by Trost and his co-workers in the allylic alkylation of acylals of alkenals. An excellent enantioselectivity is observed in this alkylation. The starting acylals are easily prepared by the Lewis-acid catalyzed addition of acid anhydrides to aldehydes, by use of Trost s ligand 118 (Scheme 13), where various carbon-centered nucleophiles are available (Scheme l4),101,101a-10lc Asymmetric synthesis of some natural products is achieved according to this procedure. [Pg.91]

These highly enantioselective Lewis-acid/Lewis-base-catalyzed dialkylzinc and phenylzinc addition reactions to imines give rise to arylalkylamides and diaryl-methylamides in excellent yields and enantioselectivities. Due to the simplicity of the process and the good availability of the imine precursors 23 from the corresponding aldehydes, wide applicability of the reported catalytic reaction can be expected. [Pg.212]


See other pages where Enantioselective Lewis-acid-catalyzed is mentioned: [Pg.539]    [Pg.341]    [Pg.81]    [Pg.259]    [Pg.259]    [Pg.539]    [Pg.341]    [Pg.81]    [Pg.259]    [Pg.259]    [Pg.175]    [Pg.248]    [Pg.249]    [Pg.270]    [Pg.285]    [Pg.305]    [Pg.1065]    [Pg.121]    [Pg.389]    [Pg.164]    [Pg.560]    [Pg.140]    [Pg.145]    [Pg.313]    [Pg.368]    [Pg.44]    [Pg.5]    [Pg.70]    [Pg.140]    [Pg.24]   


SEARCH



Boron Lewis Acid Catalyzed Enantioselective Diels-Alder Reaction

Enantioselective Lewis-acid-catalyzed Diels-Alder reaction

Lewis acid-catalyzed

Lewis catalyzed

© 2024 chempedia.info