Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclic selective

The third alternative is a more robust, sensitive and specialized fonn of the first, in that only hydrogen nuclei indirectly spin-spin coupled to in a specific molecular configuration are imaged. In achieving selectivity, the technique exploits the much wider chemical shift dispersion of compared to H. The metliod involves cyclic transfer from selected H nuclei to indirectly spin-spin coupled C nuclei and back according to the sequence... [Pg.1533]

Figure Bl.14.8. Time course study of the arrival and accumulation of labelled sucrose in the stem of a castor bean seedling. The labelled tracer was chemically, selectively edited using CYCLCROP (cyclic cross polarization). The first image in the upper left comer was taken before the incubation of the seedlmg with enriched hexoses. The time given in each image represents the time elapsed between tire start of the incubation and the acquisition. The spectmm in the lower right comer of each image shows the total intensity... Figure Bl.14.8. Time course study of the arrival and accumulation of labelled sucrose in the stem of a castor bean seedling. The labelled tracer was chemically, selectively edited using CYCLCROP (cyclic cross polarization). The first image in the upper left comer was taken before the incubation of the seedlmg with enriched hexoses. The time given in each image represents the time elapsed between tire start of the incubation and the acquisition. The spectmm in the lower right comer of each image shows the total intensity...
For the Berry phase, we shall quote a definition given in [164] ""The phase that can be acquired by a state moving adiabatically (slowly) around a closed path in the parameter space of the system. There is a further, somewhat more general phase, that appears in any cyclic motion, not necessarily slow in the Hilbert space, which is the Aharonov-Anandan phase [10]. Other developments and applications are abundant. An interim summai was published in 1990 [78]. A further, more up-to-date summary, especially on progress in experimental developments, is much needed. (In Section IV we list some publications that report on the experimental determinations of the Berry phase.) Regarding theoretical advances, we note (in a somewhat subjective and selective mode) some clarifications regarding parallel transport, e.g., [165], This paper discusses the projective Hilbert space and its metric (the Fubini-Study metric). The projective Hilbert space arises from the Hilbert space of the electronic manifold by the removal of the overall phase and is therefore a central geometrical concept in any treatment of the component phases, such as this chapter. [Pg.105]

The second application of the CFTI approach described here involves calculations of the free energy differences between conformers of the linear form of the opioid pentapeptide DPDPE in aqueous solution [9, 10]. DPDPE (Tyr-D-Pen-Gly-Phe-D-Pen, where D-Pen is the D isomer of /3,/3-dimethylcysteine) and other opioids are an interesting class of biologically active peptides which exhibit a strong correlation between conformation and affinity and selectivity for different receptors. The cyclic form of DPDPE contains a disulfide bond constraint, and is a highly specific S opioid [llj. Our simulations provide information on the cost of pre-organizing the linear peptide from its stable solution structure to a cyclic-like precursor for disulfide bond formation. Such... [Pg.164]

A particular advantage of the low-mode search is that it can be applied to botli cyclic ajic acyclic molecules without any need for special ring closure treatments. As the low-mod> search proceeds a series of conformations is generated which themselves can act as starting points for normal mode analysis and deformation. In a sense, the approach is a system ati( one, bounded by the number of low-frequency modes that are selected. An extension of th( technique involves searching random mixtures of the low-frequency eigenvectors using Monte Carlo procedure. [Pg.495]

The oxidation of simple internal alkenes is very slow. The clean selectiv oxidation of a terminal double bond in 40, even in the presence of an internt double bond, is possible under normal conditions[89,90]. The oxidation c cyclic alkenes is difficult, but can be carried out under selected condition Addition of strong mineral acids such as HCIO4, H2S04 and HBF4 accelerate the oxidation of cyclohexene and cyclopentene[48,91], A catalyst system 0 PdSO4-H3PM06W6Oii(j [92] or PdCF-CuCF m EtOH is used for the oxidatioi of cyclopentene and cyclohexene[93]. [Pg.28]

Various terminal allylic compounds are converted into l-alkenes at room temperature[362]. Regioselective hydrogenolysis with formate is used for the formation of an exo-methylene group from cyclic allylic compounds by the formal anti thermodynamic isomerization of internal double bonds to the exocyclic position[380]. Selective conversion of myrtenyl formate (579) into /9-pinene is an example. The allylic sulfone 580 and the allylic nitro compound... [Pg.368]

Experimental values are collected in the McClellan book (B-63MI40400) and in a review on dipole moments and structure of azoles (71KGS867). Some selected values are reported in Table 3. The old controversy about the dipole moment of pyrazole in solution has been settled by studying its permittivity over a large range of concentrations (75BSF1675). These measurements show that pyrazole forms non-polar cyclic dimers (39) when concentration increases and, in consequence, the permittivity value decreases. [Pg.176]

Solenoid magnetic separators are designed for batch-type, cyclic, and continuous operation. Devices which can use matrices of expanded metal, grooved plates, steel balls, or filamentaiy metals have been designed. Continuous separators with capacities to 600 t/h for iron ores (similar to the Brazilian hematite) are commercially available (Sala International Inc.). Selection of the method of operation is apphcation-dependent, being based on variables such as temperature, pressure, volume of magnetics in the feed, etc. [Pg.1798]

Some of the original work in the carbohydrate area in particular reveals extensive protection of carbonyl and hydroxyl groups. For example, a cyclic diacetonide of glucose was selectively cleaved to the monoacetonide. A summary describes the selective protection of primary and secondary hydroxyl groups in a synthesis of gentiobiose, carried out in the 1870s, as triphenylmethyl ethers. [Pg.2]

A variety of cyclic ortho esters,including cyclic orthoformates, have been developed to protect czs-1,2-diols. Cyclic ortho esters are more readily cleaved by acidic hydrolysis (e.g., by a phosphate buffer, pH 4.5-7.5, or by 0.005-0.05 M HCl) than are acetonides. Careful hydrolysis or reduction can be used to prepare selectively monoprotected diol derivatives. [Pg.135]

Catechols can be protected as diethers or diesters by methods that have been described to protect phenols. However, formation of cyclic acetals and ketals (e.g., methylenedioxy, acetonide, cyclohexylidenedioxy, diphenylmethylenedioxy derivatives) or cyclic esters (e.g., borates or carbonates) selectively protects the two adjacent hydroxyl groups in the presence of isolated phenol groups. [Pg.170]

We present here examples of this condensation with an aromatic aldehyde and a cyclic ketone. Both of these examples are useful because, although other methods are available for their preparation, problems often attend these syntheses. In the synthesis of cyclohexy11deneaceton1tr11e, for example, the standard method results exclusively In the g.y-lsomer and none of the a,g-Isomer. In Part A of this procedure, cyclohexanone Is condensed with acetonitrile to give predominantly the conjugated Isomer (80-83%) whicfi is then separated from the nonconjugated isomer by selective bromination. [Pg.184]

Substitution, addition, and group transfer reactions can occur intramolecularly. Intramolecular substitution reactions that involve hydrogen abstraction have some important synthetic applications, since they permit functionalization of carbon atoms relatively remote from the initial reaction site. ° The preference for a six-membered cyclic transition state in the hydrogen abstraction step imparts position selectivity to the process ... [Pg.718]

Aside from the above reforming reactions, a small amount of feed components are converted to polymeric hydrogen deficient products which deposit on the catalyst as "coke." A coke buildup results in activity and selectivity loss which ultimately requires catalyst regeneration. In semi-regenerative operation, the coking rate is maintained at a low level to provide cycles of at least three to six months. In cyclic units, coking conditions are inherently much more severe so that frequent regenerations are required. [Pg.49]

A low pressure semi-regenerative unit provides yields that approach those obtained in cyclic Powerforming but with savings in investment. For smaller units and moderate severities, the low pressure semi-regenerative unit would likely be the most attractive alternative if selectivity improvement credits are sufficiently high. [Pg.58]

For aromatics production, similar considerations apply. Maximum yields of xylenes and other heavy aromatics can be obtained in cyclic units, but, again, at somewhat higher investments. The process selection, thus, again requires the balancing of process credits versus debits for the specific application. For light aromatics (benzene-toluene) production, however, the situation tends to favor a... [Pg.58]


See other pages where Cyclic selective is mentioned: [Pg.6]    [Pg.6]    [Pg.450]    [Pg.1686]    [Pg.2450]    [Pg.2790]    [Pg.574]    [Pg.19]    [Pg.30]    [Pg.44]    [Pg.92]    [Pg.105]    [Pg.127]    [Pg.203]    [Pg.358]    [Pg.279]    [Pg.1497]    [Pg.1543]    [Pg.1544]    [Pg.6]    [Pg.261]    [Pg.388]    [Pg.468]    [Pg.296]    [Pg.58]   
See also in sourсe #XX -- [ Pg.532 ]




SEARCH



A Selection of Cyclic Hydrogen-Bonding Patterns Formed in Nucleoside and Nucleotide Crystal Structures

Acylating agents, selectivity, cyclic

Allyl sulfoxides y-selective conjugate addition to cyclic enones

Allylic phosphine oxides y-selective conjugate addition to cyclic enones

Allylic phosphonates y-selective conjugate addition to cyclic enones

Conjugated dienes cyclic, selective hydrogenation

Cyclic acetals, selective esterification

Cyclic enkephalins receptor selectivity

Cyclic ligands and metal-ion selectivity

Cyclic voltammetry selective binding

Fast scan cyclic voltammetry selectivity

Reagent selection cyclic derivatives formation

Selective Ring-opening of Cyclic Acetals with Carboxylic Acid-Trifluoroacetic Anhydride Mixtures

Sorbent Selection Equilibrium Isotherms, Diffusion, Cyclic

© 2024 chempedia.info